JlaGopaTopna poboTa Ne8
BinoOpaxenHsi BUMipoBaibLHOI iH(popMallii y Bed-3aCTOCYHKAX

Meta: O3HaliOMUTHCH 3 OCHOBHUMH METOJIaMH Bi10OpakeHHs iH(popMallii y Be0-3aCTOCYHKa,
noOy1oBa Jiarpam 3 BUMIPIOBAIBHOIO 1H()OPMAIII€IO.

8.1 TeoperuuHi BitomocTi

[Tapamerpu 3anuty URL-aapecu — ne mapamerpu, mo gonatorses a0 URL-ampecu nmst
nepenavi jgoaarkoBoi iHdopmarii Ha cepBep. Bonu cruigyrots 3a ? cumBosiom B URL-anpeci ta
pO3IUISIIOThCS cuMBOJIOM &. Harmpukoman:

/greet?name=John&age=25

VY npoMy npuKIaal nameTa age— 1e napaMeTpH 3anuTy 31 3HaueHHsAMHU Johnta 25BiamOBITHO.
[TapameTpu 3anmuTy AO3BOJSIIOTH KOPUCTYBauaM B3a€MOJISTH 3 BIANOBIAIMH BeO-cepBepa Ta
HAJIAIITOBYBATH 1X 0€3 3MiHU KOJIy Ha CTOPOHI cepBepa.

OOuaBa THIH MapaMeTpiB MepealoTh JaHi 0 BeO-3aCTOCYHKIB, ajle BOHU BUKOHYIOTh Pi3Hi
pOJTi Ta BUKOPUCTOBYIOTHCS B PI3HMX KOHTEKCTaX.

[Tapamerpn nusixy € HeBig'emHoro yacTuHOO URL-agpecu Ta BHKOPUCTOBYIOTHCS JUIS
TOYHOTO BHU3HAYEHHS KOHKpeTHHX pecypciB. Hampuknag, B URL-aapeci /users/123e 123
napaMeTpoM MUIXY, SKHH 11eHTH(IKYe KOHKPETHOTO KOpPHCTyBaya. BUKOpHUCTOBYiiTEe mapaMerpu
NUISAXY JUTSL BAXIIMBUX, 1€pApPXIYHAX JAHHUX, [0 BU3HAYAIOTH 1JICHTHYHICTh PECypCy.

[TapameTpu 3anuTy HagarOTh TOJATKOBY iH(opmamio Ta iayre micns a ? B URL-ampeci.
Hanpuknan, y /products?category=books&sort=price_asc, categoryra SOrt € mapamerpaMu 3aruTy.
Bonn ieanbHO MiaX0AATh Ui JOAATKOBUX JTAHHX, SIKI HAJIAIITOBYIOTh 3aIIUT, TAKUX SK (LIBTPH Ta
COPTYBaHHS.

Po3yMiHHS BiIMiIHHOCTEH Joromarae BaM BHOpaTW MpaBWIIbHUHM MiAXiJ: MapaMeTpy HIIAXY
Ui 000B'SI3KOBUX, cHelU(IYHUX I pecypcy JaHMX Ta MapaMeTpH 3amuTy JIjs HEOOOB'S3KOBHX,
HACTPOIOBAHUX JaHMX.

Flask cnpomye o6pobky mapamertpi 3anutiB URL-anpec 3a momomororo request mosyis.
Oce mpocTuil TpUKIAL, SKUH TOKa3ye, SK MOXHA BHUTIAITH THapaMeTpu 3aluTy 3a
nornomororo request.args.get():

from flask import request

@app.route(‘/route’, methods=['GET")

def function():
Extract the 'parameter_name' query parameter or use 'default_value' if not provided
variable = request.args.get('parameter_name', 'default_value’)

VYV upoMy mpukiaai Mu immoptyemo request moaynes 3 Flask mist po6otu 3 mapamerpamu
3anuty. Bam B3arajii He mOTpiOHO 3MIHIOBAaTH JeKOpaTop MapuipyTy. IIpocTo BUTATHITH 3HAYEHHS
rnmapamerpa 3anuTy parameter_name 3a nomomororo request.args.get(‘parameter_name’,
'default_value'), sikuil TakoX BCTAHOBJIOE 3HAYEHHS 3a 3aMOBUYYBAHHSAM, SIKIIO IapamMeTpu He
nepenano. Jlapaiite po3depeMo 1ie AeTalbHilIe:

requestMicTuTh yci Aasi, nos'szani 3 HTTP-3anuTom, HagiciaHuM 10 cepBepa.

argsCTpykTypa, moaiOHa 10 CIIOBHHMKA, BCEPEIUHI 00'€KTa request, sika MICTHTh MapaMeTpu
sanuty URL-anpecu.

get: OTpumye 3HaYEHHS, TIOB'SI3aHE 13 3a3HAYECHUM KJTtoueM (iM'st mapameTpa 3amnuTy) y args, 3
HEOOOB'A3KOBUM 3HAYECHHSIM 32 3aMOBUYYBAaHHSM, SIKIIO KIIOY BiJICYTHIH.

Tenep crBopumo mapuipyt Flask, sikuii npuiimae mapameTpu 3anuty ta Biamosigae JSON-
IOBIIOMJIEHHSIM.

from flask import Flask, jsonify, request

app = Flask(__name_)

@app.route('/greet’, methods=['GET"])

def greet():
Extract the 'name’ query parameter or use a default value
name = request.args.get('name’, '‘Guest’)

Return a JSON response with the query parameter
return jsonify(message=f"Greetings, {name}! Welcome to the query parameter route.")

YV mi ¢yukuii mappyty request.args.get('name’, 'Guest’) BHKOPHCTOBYETbCS st
BIJIYYCHHS NAMe mapameTpa 3aIuTy, 3a 3aMOBYYBAaHHSIM BCTAHOBJIIOIOYH 3HAa4YeHHs , 'GUESt' sKkio
oro He HamaHo. 3pewmToro, ¢yHKIS moBeprae 00'ekt JSON, sKUH MICTUTH 3HAYEHHS
napamerpa name.

8.2 IlopsiiIoK BUKOHAHHA POOOTH

0. odekaTuch CXBaJCHHS TONEpenHbOro PR, CTATHYTH 3MiHM JIOKQJIBHO 3 TLIKK Main ta
CTBOPHUTH HOBY T'UJIKY JUIs peati3aliii HoBoro (pyHKIiOHAIY;

1. BukoHatu 371uTTs 1BOX 0a3 maHux users.db Ta measurement.sqlite BAKOPUCTOBYIOYH KO 3
nonatky 1. Posmictutu daiin measurement.sqlite mopyu 3 users.db ta crBoputu ckpunt merge_db.py
B Tiii)K€ MaIIi Ta BCTAaBUTH KOJ 3 oAaTKy | Ta 3amyctutu merge_db.py

~ PROJECT & s C QO
~ backend
v app
> _ pycache__

2 api
v db
> __pycache__
db.py
measurement.sglite

merge_db.py

users_db.py

users.db

[Ticng 37AUTTS = TepeBIpUTH KOPEKTHICTh 32 JIOIOMOTOIO SQlite-viewer
(https://inloop.github.io/sglite-viewer/) 3aBanTaxusiu users.db Ha cepsic.

Dvop file heve 20 103d conmtent ar Chick on this bax 10 open Tle disicg

2. 31 CTOpOHM cepBepy AOAAaTH CHITOWHTH :
- OTPMMAaHHS CIIMCKY ICHYIOUMX JIOKAllil, 1€ BCTAHOBJIEHI CEHCOPH,

https://inloop.github.io/sqlite-viewer/
https://inloop.github.io/sqlite-viewer/

app/api/locations.py

from flask import Blueprint, jsonify
from app.db.locations import location_all
bp = Blueprint("locations”, __name__)

@bp.get("/all™)
def health_check():
locations = location_all()
return jsonify({f"data": locations}), 200

- OTPUMAaHHS CIIMCKY iICHYIOUUX CEHCOPIB;

- OTPUMAaHHS CIIUCKY ICHYIOUHX CEHCOPIB MO JIOKAIIii,

- OTPUMaHHs JIaHKX BHUMIPIOBaHb 110 CEHCOPY (TLIBKH Yac BUMIpY 1S);

- OTPUMaHHs IaHUX BUMIPIOBaHHs 110 CEHCOPY B 3aJaHuii inTepBai yacy from ts to ts;

app/api/sensors.py
from flask import Blueprint, jsonify, request
from app.db.sensors import sensors_all, get_all_measurements_by_sensor,

get_measurement_by sensor_from_to, sensors_by location
from datetime import datetime
bp = Blueprint("sensors”, __name_)

DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"

@bp.get("/all'™)
def all_sensors():
sensors = sensors_all()
return jsonify({f"data": sensors}), 200

@bp.get("/all/location/<int:location_id>")

def all_sensors_by_location(location_id):
sensors = sensors_by_location(location_id)
return jsonify({f"data": sensors}), 200

@bp.get("/sensor™)
def measurement_by_sensor_from_to():
sensor_id = request.args.get("'sensor_id", type=int)
time_from = request.args.get("time_from")
time_to = request.args.get("time_to")
sensor_info = get_measurement_by sensor_from_to(sensor_id, time_from, time_to)
return jsonify({f"data": sensor_info}), 200

@bp.get("/sensor/<int:sensor_id>")
def measurements_by_sensor(sensor_id):
measurements_sensor = get_all_measurements_by_sensor(sensor_id)
if not measurements_sensor:
return jsonify({"error": "No measurements for this sensor"}), 404

return jsonify({f"data": measurements_sensor}), 200
[To mpaBwiIamM MEKOMITO3HINT ycs B3aeMOJis 3 0a3010 JaHUX Ma€ 3HAXOJUTHUCh B OKpeMId
Marniii, ToMy:
app/db/locations.tsx
from app.db.db import get_db
def location_all():
database = get_db()
cur = database.execute("SELECT * FROM 'locations™)
res = cur.fetchall()
return [dict(row) for row in res]

app/db/sensors.tsx
from app.db.db import get_db
def sensors_all():

database = get_db()

cur = database.execute("SELECT * FROM 'sensors™)
res = cur.fetchall()

return [dict(row) for row in res]

def get_all_measurements_by sensor(sensor_id):
database = get_db()
cur = database.execute("SELECT * FROM 'readings' WHERE readings.sensor_id = ?", (sensor_id,))
res = cur.fetchall()
return [dict(row) for row in res]

def get_measurement_by sensor_from_to(sensor_id, time_from, time_to):
database = get_db()
cur = database.execute("""'SELECT * FROM readings
WHERE sensor_id =?
AND ts BETWEEN ? AND ?
ORDER BY ts ASC""",(sensor_id, time_from, time_to,)
)
res = cur.fetchall()
return [dict(row) for row in res]

def sensors_by_location(location_id):
database = get_db()
cur = database.execute("""SELECT *
FROM 'sensors'
WHERE location_id = ?
ORDER BY code ASC"™ (location_id,)
)
res = cur.fetchall()
return [dict(row) for row in res]

3apeecTpyBaTH 10JaTKOBI pOyTH B __iNit__.pYy Ta iMmopTyBaTH BiANOBIIHI MOIYJIi SENSOIS Ta
locations

app.register_blueprint(sensors, url_prefix="/api/sensors")

app.register_blueprint(locations, url_prefix="/api/locations")

3. 31 CTOpOHM KIII€HTA peani3yBaTH:
- iHcTamoBatu OiOmioreky recharts Ta o3HAHOMUTHCH 3 JOKyMeEHTaliero Recharts
(https://recharts.github.io/en-US/api/);
ITicna BcTaHOBJIEHHS 6i6niTeKa
o -

Mae 3’sIBUTHCH B package.json:

> backend

v frontend
node_modules
public
src
env
.gitignore

® eslint.config.js

ZpeactT sl
"react-dom”
package-lockjson "react-router-do
“"recharts”: "3

index.html

package.json

bl
i) README.md “devDependencies”:

tsconfig.app.json "@eslint/js":
n { "@tvnes/node" :
¥ tsconfig.json

Omnoutu poyt /dashboard na sxomy Oyne BimoOpaxaTuch rpadik:

- Ha rpadiKy NOTpiOHO peanizyBaTH BUIAJAHUN CIUCOK JIOKAIiH;

- mmiciist BUOOpY J10Kallii Mae OyTH TOCTYMHUIA BUTIAIHUI CIUCOK CEHCOPIB, 1110 BCTAHOBJICHUH
Ha BUOpaHii JOKaIlii;

- mmicst BHOOPY CEHCOpY MArOTh OYTH JIOCTYITHI 2 BUIaHI CIIMUCKHU Yacy BUMiptoBaHb from to

- TICIIS BBECHHS yCiX JAaHHWX Ta HATHMCKAHHSA KHOMKH «ShOW» Mae BimoOpakaTtuch rpadik 3
BuOpanumu merpukamu (Temnepatypa, Bonoricts, Hanpyra, pisens CO, OcBIT/IEHICTb, Ta PIBEHb
NO:) [Ipuknan npuBeneHoO B 10JaTKY 2;

https://recharts.github.io/en-US/api/
https://recharts.github.io/en-US/api/

src/components/Dashboard/index.tsx
import React, { useEffect, useState } from "react™;
import {
ResponsiveContainer,
LineChart,
Line,
CartesianGrid,
XAXis,
YAXis,
Tooltip,
Legend,
} from “recharts";
import s from "./style.module.css";
import { fetchLocations } from "../../api/locations/locations";
import type { ILocation } from "../../interfaces/locations";
import {
fetchSensor,
fetchSensorsList,
getData,
} from "../../api/sensors/sensors";
import type { 1Sensorinfo, 1Sensors } from "../../interfaces/sensors";

type MetricKey =
| "co_ppm"
| "humidity_pct
| "light_lux"
| "no2_ppb"
| "temperature_c"
| "voltage_v";

const METRICS: { key: MetricKey; label: string; color: string }[] = [

{ key: "temperature c", label: "Temperature, °C", color: "#34d399" },
{ key: "humidity_pct", label: "Humidity, %", color: "#60a5fa" },

{ key: "voltage_v", label: "Voltage, V", color: "#f97316" },

{ key: "co_ppm", label: "CO, ppm", color: "#faccl15" },

{ key: "light_lux", label: "Light, lux", color: "#a855f7" },

{ key: "no2_ppb", label: "NO, ppb", color: "#f97316" },

I§

export const Dashboard: React.FC = () => {
const [selectedMetrics, setSelectedMetrics] = useState<MetricKey[]>([
"temperature_c",
D
const [locations, setLocations] = useState<ILocation[]>([]);
const [sensorsList, setSensorsList] = useState<ISensors[]>([]);
const [sensorld, setSensorld] = useState<number>(-1);
const [sensorinfo, setSensorinfo] = useState<iSensorInfo[] | undefined>();
const [locationld, setLocationld] = useState<number>(-1);
const [timeFrom, setTimeFrom] = useState<string>("");
const [timeTo, setTimeTo] = useState<string>("");
const [viewData, setViewData] = useState<ISensorInfo[] | undefined>();

useEffect(() => {
fetchLocations().then(setLocations);

IR I)E

useEffect(() => {
if (locationld !=-1) {
fetchSensorsList(locationld).then(setSensorsList);

}
}, [locationid]);
useEffect(() => {

if (sensorld '=-1) {
fetchSensor(sensorld).then(setSensorInfo);

}
}, [sensorld]);

const toggleMetric = (metric: MetricKey) => {
setSelectedMetrics((prev) =>
prev.includes(metric)
? prev.filter((m) => m !== metric)
. [...prev, metric]
)i
h

const handleApplyFilters = async () => {
try {
const data = await getData(sensorld, timeFrom, timeTo);
setViewData(data);
} catch (err) {
console.error(err);
}
b

return (
<div className={s.root}>
<div className={s.container}>
<header className={s.header}>
<div>
<hl className={s.title}>Dashboard</h1>
<p className={s.subtitle}>A quick overview of your measurements.</p>
</div>
</header>

<section className={s.chartCard}>
<div className={s.chartHeader}>
<div>
<h2 className={s.cardTitle}>Measurements</h2>
<p className={s.cardText}>
One flexible chart. Toggle metrics and change filters to explore
data.
</p>
</div>

<div className={s.chartFilters}>
<div className={s.filterGroup}>
<label>Location</label>
<select
value={locationld}
onChange={(e) => setLocationld(Number(e.target.value))}

>
<option value={-1}>-----||------ </option>
{locations.map((location, id) => {
return (

<option key={id} value={location.id}>
{location.name}
</option>
);
H}
</select>
</div>

<div className={s.filterGroup}>
<label>Sensor</label>
<select
value={sensorld}
onChange={(e) => setSensorld(Number(e.target.value))}
>
<option value={-1}>-----||------ </option>

{sensorsList.map((sensors, id) => {
return (

<option key={id} value={sensors.id}>
{sensors.code}

</option>

);
H}

</select>

</div>

<div className={s.filterGroup}>
<label>From</label>

<select
value={timeFrom}
onChange={(e) => setTimeFrom(e.target.value)}
>
<option value={-1}> YYYY-MM-DD HH:MM:SS"</option>
{sensorinfo?.map((sensor, id) => {
return (
<option key={id} value={sensor.ts}>
{sensor.ts}
</option>
);
H}
</select>
</div>

<div className={s.filterGroup}>
<label>To</label>
<select
value={timeTo}
onChange={(e) => setTimeTo(e.target.value)}
>
<option value={-1}> YYYY-MM-DD HH:MM:SS"</option>
{sensorlInfo
?.map((sensor, id) => {
return (
<option key={id} value={sensor.ts}>
{sensor.ts}
</option>
);
b
reverse()}
</select>
</div>

<button
className={s.btnApply}
onClick={handleApplyFilters}
disabled={!(locationld && sensorld && timeFrom && timeTo)}

>
Apply

</button>

</div>
</div>

<div className={s.chartMetrics}>
{METRICS.map((m) => (
<button
key={m.key}
className={
selectedMetrics.includes(m.key)

? "${s.metricToggle} ${s.metricToggleActive}
: s.metricToggle

}
onClick={() => toggleMetric(m.key)}
>
<span
className={s.metricColorDot}
style={{ backgroundColor: m.color }}
/>
{m.label}
</button>

)}

</div>

<div className={s.chartWrapper}>
<ResponsiveContainer width="100%" height="100%">
<LineChart
data={viewData}
margin={{ top: 10, right: 30, left: 0, bottom: 0 }}
>
<CartesianGrid stroke="#1f2937" vertical={false} />
<XAXis
dataKey="ts"
tick={{ fill: "#9ca3af", fontSize: 12 }}
tickLine={false}
interval="preserveStartEnd"
minTickGap={40}
/>
<YAXis
tick={{ fill: "#9ca3af", fontSize: 12 }}
tickLine={false}
/>
<Tooltip
contentStyle={{
backgroundColor: "#020617",
border: "1px solid #1f2937",
borderRadius: 8,
color: "#ebe7eb",
fontSize: 12,

3}
/>
<Legend wrapperStyle={{ color: "#9ca3af" }} />
{METRICS filter((m) => selectedMetrics.includes(m.key)).map(
(m) =>(
<Line
key={m.key}
type="step"
dataKey={m.key}
name={m.label}
stroke={m.color}
strokeWidth={2}
dot={false}
activeDot={{r: 4 }}
/>
)

)}
</LineChart>

</ResponsiveContainer>
</div>
</section>
</div>
</div>
)i
h

export default Dashboard,;

src/components/style.module.css
.root {

min-height: 100vh;
background: radial-gradient(circle at top left, #1e293b 0, #020617 45%, #000 100%);
color: #e5e7eb;

font-family: system-ui, -apple-system, BlinkMacSystemFont, “Segoe UI", sans-serif;
}

.container {

max-width: 1200px;
margin: 0 auto;

padding: 32px 24px 40px;

.header {

display: flex;

justify-content: space-between;
align-items: center;
margin-bottom: 24px;

}

title {
font-size: 28px;
font-weight: 700;
color: #f9fafb;

}

.subtitle {
margin-top: 4px;
font-size: 14px;
color: #9ca3af;

}

.topRow {

display: grid;

grid-template-columns: repeat(2, minmax(0, 1fr));
gap: 20px;

margin-bottom: 20px;

}

.card,

.chartCard,
.bottomCard {

background: #020617;
border-radius: 18px;
border: 1px solid #111827;
padding: 18px 22px 20px;

box-shadow: 0 18px 45px rgha(0, 0, 0, 0.7);
¥

.cardTitle {
font-size: 16px;
font-weight: 600;
color: #e5e7eb;
margin-bottom: 6pXx;

¥

.cardText {
font-size: 13px;
color: #9ca3af;

¥

.cardList {
margin: 8px 0 0;
padding-left: 18px;

font-size: 13px;
color: #d1d5db;
}

.statusBadges {
display: flex;
gap: 8px;
margin-top: 14px;
¥

.badge {
padding: 4px 10px;
border-radius: 999px;
font-size: 11px;
font-weight: 500;

}

.badgeSuccess {
background: #16a34ala;
color: #4ade80;
border: 1px solid #16a34a;

}

.badgeOutline {
background: transparent;
color: #60a5fa;
border: 1px solid #1d4ed8;

¥

.chartCard {
margin-bottom: 20px;

¥

.chartHeader {
display: flex;
justify-content: space-between;
gap: 18px;
align-items: flex-start;
margin-bottom: 12px;

}

.chartFilters {
display: flex;
flex-wrap: wrap;
gap: 10px;
align-items: flex-end;

}

filterGroup {
display: flex;
flex-direction: column;
gap: 4px;

filterGroup label {
font-size: 11px;
color: #9ca3af;

¥

filterGroup select,

filterGroup input {
background: #020617;
border-radius: 10pXx;
border: 1px solid #1f2937;
padding: 6px 9px;

font-size: 12px;
color: #ebe7eb;
outline: none;

¥

.btnApply {
padding: 7px 14px;
border-radius: 999px;
border: none;
background: linear-gradient(135deg, #3b82f6, #22c55¢);
color: white;
font-size: 12px;
font-weight: 600;
cursor: pointer;

}

.btnApply:hover {
opacity: 0.9;
¥

.btnApply:disabled{
padding: 7px 14px;
border-radius: 999px;
border: none;
background: linear-gradient(135deg, #020617, #1f2937);
color: white;
font-size: 12px;
font-weight: 600;
cursor: pointer;
border: solid 1px black;
opacity: 1;

}

.chartMetrics {
display: flex;
flex-wrap: wrap;
gap: 8px;
margin: 8px 0 12px;

}

.metricToggle {
display: inline-flex;
align-items: center;
gap: 6px;
padding: 5px 10px;
border-radius: 999px;
border: 1px solid #1f2937;
background: #020617;
font-size: 11px;
color: #9ca3af;
cursor: pointer;

¥

.metricToggleActive {
border-color: #3b82f6;
color: #ebe7eb;
background: #0b1120;

¥

.metricColorDot {
width: 8px;
height: 8px;
border-radius: 999px;
}

.chartWrapper {
margin-top: 2px;
height: 380px;

}

.bottomCard {
margin-top: 10px;
¥

@media (max-width: 900px) {
.topRow {
grid-template-columns: 1fr;

¥

.chartHeader {
flex-direction: column;
align-items: flex-start;

¥

.chartFilters {
width: 100%;
justify-content: flex-start;
}
}

4. Jlomaty 3amUTH Ha CEpBEp HAa CTBOPEHI CHIIOWHTH I OTPUMAHHS 1H(OpMAIli mpo
JIOKaIlii, CCHCOpPH Ta BUMIPIOBAJIbHI JIaHHI.

src/api/locations/locations.tsx
import type { ILocation } from "../../interfaces/locations";
import type { IRes } from "../../interfaces/response™;

export const fetchLocations = async (): Promise<ILocation[]> => {
const url = import.meta.env.VITE_API_URL,;

const res = await fetch("${url}/api/locations/all’, {
method: "GET",
headers: {
"Content-Type": "application/json",

b

if (res.ok) {

throw new Error(

“Failed to fetch locations: ${res.status} ${res.statusText}"
);
}

const body: IRes<ILocation[]> = await res.json();
return body.data;

¥

src/api/sensors/sensors.tsx
import type { IRes } from "../../interfaces/response”;
import type { I1Sensorinfo, 1Sensors } from "../../interfaces/sensors™;

export const fetchSensorsList = async (
location_id: number

): Promise<ISensors[]> => {
const url = import.meta.env.VITE_API_URL;

const res = await fetch("${url}/api/sensors/all/location/${location_id}", {
method: "GET",
headers: {
"Content-Type": "application/json™,

3
b

if (Ires.ok) {
throw new Error(
“Failed to fetch locations: ${res.status} ${res.statusText}"

);

const body: IRes<ISensors[]> = await res.json();
return body.data;

¥

export const fetchSensor = async (
sensor_id: number
): Promise<ISensorinfo[]> => {
const url = import.meta.env.VITE_API_URL;

const res = await fetch("${url}/api/sensors/sensor/${sensor_id}", {
method: "GET",
headers: {
"Content-Type": "application/json",

bk

if (Tres.ok) {

throw new Error(

“Failed to fetch locations: ${res.status} ${res.statusText}"
)i
}

const body: IRes<ISensorInfo[]> = await res.json();
return body.data;

¥

export const getData = async (
sensor_id: number,
time_from: string,
time_to: string
): Promise<ISensorinfo[]> => {
const url = import.meta.env.VITE_API_URL,;

const res = await fetch(
“${url}api/sensors/sensor?sensor_id=${sensor_id}&time_from=${time_from}&time_to=${time_to}",
{
method: "GET",
headers: {
"Content-Type": "application/json”,
3
}
);

if ('res.ok) {
throw new Error(
“Failed to fetch locations: ${res.status} ${res.statusText}"

);

const body: IRes<ISensorInfo[]> = await res.json();
return body.data;
h
Ta BinnoBigHi iHTepdeEcH I HIX:
src/interfaces/sensors.tsx
export interface 1Sensors {

code: string;

fw_version: string;

id: number;

location_id: number;

serial: string;
type: string;
}

export interface 1Sensorinfo {
co_ppm: number;
humidity_pct: number;
light_lux: number;
no2_ppb: humber;
sensor_id: number;
temperature_c: number;
ts: string;
voltage_v: number;

src/interfaces/locations.tsx
export interface ILocation {
description: string;
id: number;
name: string;

}

src/interfaces/response.tsx
export interface IRes<T> {
data: T;

¥

4. TIpogeMOHCTpyBaTH poOOTY BeO 3aCTOCYHKY IPOJCMOHCTPYBABIIM BKJIaaKy Network B
DevTools. Ta BigoOpaxeHHs BUMIpIOBaIbHOI iH(pOMAIII.

5. 3akomitutu 3MiHM Ta 3amymuTa Ha GitHub, chopmysat PR ommcaru i#oro(mo 0yino
BUKOHAHO) Ta JIOUYEKATHUCh CXBaJCHHs BUKJIaJaya Ha merge. HaxicnaTu Ha momITy 3BIT 1 MOCUJIAHHS
Ha PR.

8.3 3micr 3BiTY

1. HaiimMenyBaHHs 1 MeTa poOOTH;
2. Koa 1o KoXHOMY IYHKTY NOPSAKY BUKOHAHHS poOOTH;
3. PesymbraT poOOTH 11O KOKHOMY ITyHKTY BUKOHAHHS pOOOTH;
4. BucHOBKH.
8.4 KoHTpO/IbHi 3aUTAHHA
1. Yuwm Bigpizuserbes path (/products/1) Bin query string (?page=2&limit=20)?
2. Y sSKuX BUMAJKax JIOTIYHO BUKOPHCTOBYBATH path-mapamerp, a B skux — query-napamerp?
3. Sk KOIyrOThCs ClielianbHi CUMBOJIM Y quUery-psaaKy (mpoOisu, yKpaiHChKi OyKBU TOII0)?
4. YoMy BaXJIMBO NEPEBIPATH Ta BaliJIOByBaTU 3HAYEHHsI query-apaMmerTpiB (THUII, Jiama3oH,

000B’s13K0BicTh) Ha OekeHi? HaBean MOXKIIMBI HACHIIKK BIICYTHOCTI Takoi BaJifarii.

Honarok 1
import sqlite3
from pathlib import Path

USERS_DB = Path("backend/app/db/users.db™)
MEAS_DB = Path("backend/app/db/measurement.sqlite")
def main():

conn = sglite3.connect(USERS_DB)
cur = conn.cursor()

cur.execute("ATTACH DATABASE ? AS meas", (str(MEAS_DB),))

tables = cur.execute(
SELECT name, sql
FROM meas.sqlite_master
WHERE type = 'table’
AND name NOT LIKE 'sglite_%;

).fetchall()

for name, create_sql in tables:
print(f"O6pobmnsro Tabmurro: {name!r}")

exists = cur.execute(
SELECT 1
FROM sglite_master
WHERE type = 'table’ AND name = ?;
(name,),
).fetchone()

if not exists:
if create_sql:
print(f" CrBoproro Tabnuiio {name!r} B users.db")
cur.execute(create_sql)
else:
print(f* Tabauus {name!r} Bxe icHye B users.db, mpomyckaro CREATE TABLE")

try:
print(f" Komiroro gani 3 meas. {name} y {name}")
cur.execute(f"INSERT INTO {name} SELECT * FROM meas.{name};")
except sqlite3.Error as e:
print(f* TIOMUWJIKA npu xomitoBanHi Tadbmuii {name}: {e}")

conn.commit()

cur.execute("DETACH DATABASE meas")
conn.close()

if _name__ =="_main_ "
main()

Jonatok 2

Dashboard

Measurements

- 20251030 14 20 00

» Temponyase. *(. Mmary, W

