
Лабораторна робота №8

Відображення вимірювальної інформації у веб-застосунках

Мета: Ознайомитись з основними методами відображення інформації у веб-застосунка,

побудова діаграм з вимірювальною інформацією.

8.1 Теоретичні відомості

Параметри запиту URL-адреси – це параметри, що додаються до URL-адреси для

передачі додаткової інформації на сервер. Вони слідують за ? символом в URL-адресі та

розділяються символом &. Наприклад:

/greet?name=John&age=25

У цьому прикладі nameта age– це параметри запиту зі значеннями Johnта 25відповідно.

Параметри запиту дозволяють користувачам взаємодіяти з відповідями веб-сервера та

налаштовувати їх без зміни коду на стороні сервера.

Обидва типи параметрів передають дані до веб-застосунків, але вони виконують різні

ролі та використовуються в різних контекстах.

Параметри шляху є невід'ємною частиною URL-адреси та використовуються для

точного визначення конкретних ресурсів. Наприклад, в URL-адресі /users/123є 123

параметром шляху, який ідентифікує конкретного користувача. Використовуйте параметри

шляху для важливих, ієрархічних даних, що визначають ідентичність ресурсу.

Параметри запиту надають додаткову інформацію та йдуть після a ? в URL-адресі.

Наприклад, у /products?category=books&sort=price_asc, categoryта sort є параметрами запиту.

Вони ідеально підходять для додаткових даних, які налаштовують запит, таких як фільтри та

сортування.

Розуміння відмінностей допомагає вам вибрати правильний підхід: параметри шляху

для обов'язкових, специфічних для ресурсу даних та параметри запиту для необов'язкових,

настроюваних даних.

Flask спрощує обробку параметрів запитів URL-адрес за допомогою request модуля.

Ось простий приклад, який показує, як можна витягти параметри запиту за

допомогою request.args.get():

from flask import request

@app.route('/route', methods=['GET'])

def function():

 # Extract the 'parameter_name' query parameter or use 'default_value' if not provided

 variable = request.args.get('parameter_name', 'default_value')

У цьому прикладі ми імпортуємо request модуль з Flask для роботи з параметрами

запиту. Вам взагалі не потрібно змінювати декоратор маршруту. Просто витягніть значення

параметра запиту parameter_name за допомогою request.args.get('parameter_name',

'default_value'), який також встановлює значення за замовчуванням, якщо параметри не

передано. Давайте розберемо це детальніше:

requestМістить усі дані, пов'язані з HTTP-запитом, надісланим до сервера.

argsСтруктура, подібна до словника, всередині об'єкта request, яка містить параметри

запиту URL-адреси.

get: Отримує значення, пов'язане із зазначеним ключем (ім'я параметра запиту) у args, з

необов'язковим значенням за замовчуванням, якщо ключ відсутній.

Тепер створимо маршрут Flask, який приймає параметри запиту та відповідає JSON-

повідомленням.

from flask import Flask, jsonify, request

app = Flask(__name__)

@app.route('/greet', methods=['GET'])

def greet():

 # Extract the 'name' query parameter or use a default value

 name = request.args.get('name', 'Guest')

 # Return a JSON response with the query parameter

 return jsonify(message=f"Greetings, {name}! Welcome to the query parameter route.")

У цій функції маршруту request.args.get('name', 'Guest') використовується для

вилучення name параметра запиту, за замовчуванням встановлюючи значення , 'Guest' якщо

його не надано. Зрештою, функція повертає об'єкт JSON, який містить значення

параметра name.

8.2 Порядок виконання роботи

0. Дочекатись схвалення попереднього PR, стягнути зміни локально з гілки main та

створити нову гілку для реалізації нового функціоналу;

1. Виконати злиття двох баз даних users.db та measurement.sqlite використовуючи код з

додатку 1. Розмістити файл measurement.sqlite поруч з users.db та створити скрипт merge_db.py

в тій же папці та вставити код з додатку 1 та запустити merge_db.py

 Після злиття перевірити коректність за допомогою SQlite-viewer

(https://inloop.github.io/sqlite-viewer/) завантаживши users.db на сервіс.

2. Зі сторони серверу додати ендпойнти :

- отримання списку існуючих локацій, де встановлені сенсори;

https://inloop.github.io/sqlite-viewer/
https://inloop.github.io/sqlite-viewer/

app/api/locations.py
from flask import Blueprint, jsonify

from app.db.locations import location_all

bp = Blueprint("locations", __name__)

@bp.get("/all")

def health_check():

 locations = location_all()

 return jsonify({f"data": locations}), 200

- отримання списку існуючих сенсорів;

- отримання списку існуючих сенсорів по локації;

- отримання даних вимірювань по сенсору (тільки час виміру ts);

- отримання даних вимірювання по сенсору в заданий інтервал часу from ts to ts;

app/api/sensors.py
from flask import Blueprint, jsonify, request

from app.db.sensors import sensors_all, get_all_measurements_by_sensor,

get_measurement_by_sensor_from_to, sensors_by_location

from datetime import datetime

bp = Blueprint("sensors", __name__)

DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S"

@bp.get("/all")

def all_sensors():

 sensors = sensors_all()

 return jsonify({f"data": sensors}), 200

@bp.get("/all/location/<int:location_id>")

def all_sensors_by_location(location_id):

 sensors = sensors_by_location(location_id)

 return jsonify({f"data": sensors}), 200

@bp.get("/sensor")

def measurement_by_sensor_from_to():

 sensor_id = request.args.get("sensor_id", type=int)

 time_from = request.args.get("time_from")

 time_to = request.args.get("time_to")

 sensor_info = get_measurement_by_sensor_from_to(sensor_id, time_from, time_to)

 return jsonify({f"data": sensor_info}), 200

@bp.get("/sensor/<int:sensor_id>")

def measurements_by_sensor(sensor_id):

 measurements_sensor = get_all_measurements_by_sensor(sensor_id)

 if not measurements_sensor:

 return jsonify({"error": "No measurements for this sensor"}), 404

 return jsonify({f"data": measurements_sensor}), 200

По правилам декомпозиції уся взаємодія з базою даних має знаходитись в окремій

папці, тому:

app/db/locations.tsx
from app.db.db import get_db

def location_all():

 database = get_db()

 cur = database.execute("SELECT * FROM 'locations'")

 res = cur.fetchall()

 return [dict(row) for row in res]

app/db/sensors.tsx
from app.db.db import get_db

def sensors_all():

 database = get_db()

 cur = database.execute("SELECT * FROM 'sensors'")

 res = cur.fetchall()

 return [dict(row) for row in res]

def get_all_measurements_by_sensor(sensor_id):

 database = get_db()

 cur = database.execute("SELECT * FROM 'readings' WHERE readings.sensor_id = ?", (sensor_id,))

 res = cur.fetchall()

 return [dict(row) for row in res]

def get_measurement_by_sensor_from_to(sensor_id, time_from, time_to):

 database = get_db()

 cur = database.execute("""SELECT * FROM readings

 WHERE sensor_id = ?

 AND ts BETWEEN ? AND ?

 ORDER BY ts ASC""",(sensor_id, time_from, time_to,)

)

 res = cur.fetchall()

 return [dict(row) for row in res]

def sensors_by_location(location_id):

 database = get_db()

 cur = database.execute("""SELECT *

 FROM 'sensors'

 WHERE location_id = ?

 ORDER BY code ASC""",(location_id,)

)

 res = cur.fetchall()

 return [dict(row) for row in res]

Зареєструвати додаткові роути в __init__.py та імпортувати відповідні модулі sensors та

locations
app.register_blueprint(sensors, url_prefix="/api/sensors")

app.register_blueprint(locations, url_prefix="/api/locations")

3. Зі сторони клієнта реалізувати:

- інсталювати бібліотеку recharts та ознайомитись з документацією Recharts

(https://recharts.github.io/en-US/api/);

Після встановлення бібліотека має з’явитись в package.json:

 Оновити роут /dashboard на якому буде відображатись графік:

 - на графіку потрібно реалізувати випадний список локацій;

 - після вибору локації має бути доступний випадний список сенсорів, що встановлений

на вибраній локації;

 - після вибору сенсору мають бути доступні 2 випадні списки часу вимірювань from to

 - після введення усіх даних та натискання кнопки «show» має відображатись графік з

вибраними метриками (Температура, Вологість, Напруга, рівень CO, Освітленість, та рівень

NO₂) Приклад приведено в додатку 2;

https://recharts.github.io/en-US/api/
https://recharts.github.io/en-US/api/

src/components/Dashboard/index.tsx
import React, { useEffect, useState } from "react";

import {

 ResponsiveContainer,

 LineChart,

 Line,

 CartesianGrid,

 XAxis,

 YAxis,

 Tooltip,

 Legend,

} from "recharts";

import s from "./style.module.css";

import { fetchLocations } from "../../api/locations/locations";

import type { ILocation } from "../../interfaces/locations";

import {

 fetchSensor,

 fetchSensorsList,

 getData,

} from "../../api/sensors/sensors";

import type { ISensorInfo, ISensors } from "../../interfaces/sensors";

type MetricKey =

 | "co_ppm"

 | "humidity_pct"

 | "light_lux"

 | "no2_ppb"

 | "temperature_c"

 | "voltage_v";

const METRICS: { key: MetricKey; label: string; color: string }[] = [

 { key: "temperature_c", label: "Temperature, °C", color: "#34d399" },

 { key: "humidity_pct", label: "Humidity, %", color: "#60a5fa" },

 { key: "voltage_v", label: "Voltage, V", color: "#f97316" },

 { key: "co_ppm", label: "CO, ppm", color: "#facc15" },

 { key: "light_lux", label: "Light, lux", color: "#a855f7" },

 { key: "no2_ppb", label: "NO₂, ppb", color: "#f97316" },

];

export const Dashboard: React.FC = () => {

 const [selectedMetrics, setSelectedMetrics] = useState<MetricKey[]>([

 "temperature_c",

]);

 const [locations, setLocations] = useState<ILocation[]>([]);

 const [sensorsList, setSensorsList] = useState<ISensors[]>([]);

 const [sensorId, setSensorId] = useState<number>(-1);

 const [sensorInfo, setSensorInfo] = useState<ISensorInfo[] | undefined>();

 const [locationId, setLocationId] = useState<number>(-1);

 const [timeFrom, setTimeFrom] = useState<string>("");

 const [timeTo, setTimeTo] = useState<string>("");

 const [viewData, setViewData] = useState<ISensorInfo[] | undefined>();

 useEffect(() => {

 fetchLocations().then(setLocations);

 }, []);

 useEffect(() => {

 if (locationId != -1) {

 fetchSensorsList(locationId).then(setSensorsList);

 }

 }, [locationId]);

 useEffect(() => {

 if (sensorId != -1) {

 fetchSensor(sensorId).then(setSensorInfo);

 }

 }, [sensorId]);

 const toggleMetric = (metric: MetricKey) => {

 setSelectedMetrics((prev) =>

 prev.includes(metric)

 ? prev.filter((m) => m !== metric)

 : [...prev, metric]

);

 };

 const handleApplyFilters = async () => {

 try {

 const data = await getData(sensorId, timeFrom, timeTo);

 setViewData(data);

 } catch (err) {

 console.error(err);

 }

 };

 return (

 <div className={s.root}>

 <div className={s.container}>

 <header className={s.header}>

 <div>

 <h1 className={s.title}>Dashboard</h1>

 <p className={s.subtitle}>A quick overview of your measurements.</p>

 </div>

 </header>

 <section className={s.chartCard}>

 <div className={s.chartHeader}>

 <div>

 <h2 className={s.cardTitle}>Measurements</h2>

 <p className={s.cardText}>

 One flexible chart. Toggle metrics and change filters to explore

 data.

 </p>

 </div>

 <div className={s.chartFilters}>

 <div className={s.filterGroup}>

 <label>Location</label>

 <select

 value={locationId}

 onChange={(e) => setLocationId(Number(e.target.value))}

 >

 <option value={-1}>-----||------</option>

 {locations.map((location, id) => {

 return (

 <option key={id} value={location.id}>

 {location.name}

 </option>

);

 })}

 </select>

 </div>

 <div className={s.filterGroup}>

 <label>Sensor</label>

 <select

 value={sensorId}

 onChange={(e) => setSensorId(Number(e.target.value))}

 >

 <option value={-1}>-----||------</option>

 {sensorsList.map((sensors, id) => {

 return (

 <option key={id} value={sensors.id}>

 {sensors.code}

 </option>

);

 })}

 </select>

 </div>

 <div className={s.filterGroup}>

 <label>From</label>

 <select

 value={timeFrom}

 onChange={(e) => setTimeFrom(e.target.value)}

 >

 <option value={-1}> YYYY-MM-DD HH:MM:SS"</option>

 {sensorInfo?.map((sensor, id) => {

 return (

 <option key={id} value={sensor.ts}>

 {sensor.ts}

 </option>

);

 })}

 </select>

 </div>

 <div className={s.filterGroup}>

 <label>To</label>

 <select

 value={timeTo}

 onChange={(e) => setTimeTo(e.target.value)}

 >

 <option value={-1}> YYYY-MM-DD HH:MM:SS"</option>

 {sensorInfo

 ?.map((sensor, id) => {

 return (

 <option key={id} value={sensor.ts}>

 {sensor.ts}

 </option>

);

 })

 .reverse()}

 </select>

 </div>

 <button

 className={s.btnApply}

 onClick={handleApplyFilters}

 disabled={!(locationId && sensorId && timeFrom && timeTo)}

 >

 Apply

 </button>

 </div>

 </div>

 <div className={s.chartMetrics}>

 {METRICS.map((m) => (

 <button

 key={m.key}

 className={

 selectedMetrics.includes(m.key)

 ? `${s.metricToggle} ${s.metricToggleActive}`

 : s.metricToggle

 }

 onClick={() => toggleMetric(m.key)}

 >

 <span

 className={s.metricColorDot}

 style={{ backgroundColor: m.color }}

 />

 {m.label}

 </button>

))}

 </div>

 <div className={s.chartWrapper}>

 <ResponsiveContainer width="100%" height="100%">

 <LineChart

 data={viewData}

 margin={{ top: 10, right: 30, left: 0, bottom: 0 }}

 >

 <CartesianGrid stroke="#1f2937" vertical={false} />

 <XAxis

 dataKey="ts"

 tick={{ fill: "#9ca3af", fontSize: 12 }}

 tickLine={false}

 interval="preserveStartEnd"

 minTickGap={40}

 />

 <YAxis

 tick={{ fill: "#9ca3af", fontSize: 12 }}

 tickLine={false}

 />

 <Tooltip

 contentStyle={{

 backgroundColor: "#020617",

 border: "1px solid #1f2937",

 borderRadius: 8,

 color: "#e5e7eb",

 fontSize: 12,

 }}

 />

 <Legend wrapperStyle={{ color: "#9ca3af" }} />

 {METRICS.filter((m) => selectedMetrics.includes(m.key)).map(

 (m) => (

 <Line

 key={m.key}

 type="step"

 dataKey={m.key}

 name={m.label}

 stroke={m.color}

 strokeWidth={2}

 dot={false}

 activeDot={{ r: 4 }}

 />

)

)}

 </LineChart>

 </ResponsiveContainer>

 </div>

 </section>

 </div>

 </div>

);

};

export default Dashboard;

src/components/style.module.css
.root {

 min-height: 100vh;

 background: radial-gradient(circle at top left, #1e293b 0, #020617 45%, #000 100%);

 color: #e5e7eb;

 font-family: system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", sans-serif;

}

.container {

 max-width: 1200px;

 margin: 0 auto;

 padding: 32px 24px 40px;

}

.header {

 display: flex;

 justify-content: space-between;

 align-items: center;

 margin-bottom: 24px;

}

.title {

 font-size: 28px;

 font-weight: 700;

 color: #f9fafb;

}

.subtitle {

 margin-top: 4px;

 font-size: 14px;

 color: #9ca3af;

}

.topRow {

 display: grid;

 grid-template-columns: repeat(2, minmax(0, 1fr));

 gap: 20px;

 margin-bottom: 20px;

}

.card,

.chartCard,

.bottomCard {

 background: #020617;

 border-radius: 18px;

 border: 1px solid #111827;

 padding: 18px 22px 20px;

 box-shadow: 0 18px 45px rgba(0, 0, 0, 0.7);

}

.cardTitle {

 font-size: 16px;

 font-weight: 600;

 color: #e5e7eb;

 margin-bottom: 6px;

}

.cardText {

 font-size: 13px;

 color: #9ca3af;

}

.cardList {

 margin: 8px 0 0;

 padding-left: 18px;

 font-size: 13px;

 color: #d1d5db;

}

.statusBadges {

 display: flex;

 gap: 8px;

 margin-top: 14px;

}

.badge {

 padding: 4px 10px;

 border-radius: 999px;

 font-size: 11px;

 font-weight: 500;

}

.badgeSuccess {

 background: #16a34a1a;

 color: #4ade80;

 border: 1px solid #16a34a;

}

.badgeOutline {

 background: transparent;

 color: #60a5fa;

 border: 1px solid #1d4ed8;

}

.chartCard {

 margin-bottom: 20px;

}

.chartHeader {

 display: flex;

 justify-content: space-between;

 gap: 18px;

 align-items: flex-start;

 margin-bottom: 12px;

}

.chartFilters {

 display: flex;

 flex-wrap: wrap;

 gap: 10px;

 align-items: flex-end;

}

.filterGroup {

 display: flex;

 flex-direction: column;

 gap: 4px;

}

.filterGroup label {

 font-size: 11px;

 color: #9ca3af;

}

.filterGroup select,

.filterGroup input {

 background: #020617;

 border-radius: 10px;

 border: 1px solid #1f2937;

 padding: 6px 9px;

 font-size: 12px;

 color: #e5e7eb;

 outline: none;

}

.btnApply {

 padding: 7px 14px;

 border-radius: 999px;

 border: none;

 background: linear-gradient(135deg, #3b82f6, #22c55e);

 color: white;

 font-size: 12px;

 font-weight: 600;

 cursor: pointer;

}

.btnApply:hover {

 opacity: 0.9;

}

.btnApply:disabled{

 padding: 7px 14px;

 border-radius: 999px;

 border: none;

 background: linear-gradient(135deg, #020617, #1f2937);

 color: white;

 font-size: 12px;

 font-weight: 600;

 cursor: pointer;

 border: solid 1px black;

 opacity: 1;

}

.chartMetrics {

 display: flex;

 flex-wrap: wrap;

 gap: 8px;

 margin: 8px 0 12px;

}

.metricToggle {

 display: inline-flex;

 align-items: center;

 gap: 6px;

 padding: 5px 10px;

 border-radius: 999px;

 border: 1px solid #1f2937;

 background: #020617;

 font-size: 11px;

 color: #9ca3af;

 cursor: pointer;

}

.metricToggleActive {

 border-color: #3b82f6;

 color: #e5e7eb;

 background: #0b1120;

}

.metricColorDot {

 width: 8px;

 height: 8px;

 border-radius: 999px;

}

.chartWrapper {

 margin-top: 2px;

 height: 380px;

}

.bottomCard {

 margin-top: 10px;

}

@media (max-width: 900px) {

 .topRow {

 grid-template-columns: 1fr;

 }

 .chartHeader {

 flex-direction: column;

 align-items: flex-start;

 }

 .chartFilters {

 width: 100%;

 justify-content: flex-start;

 }

}

4. Додати запити на сервер на створені ендпойнти для отримання інформації про

локації, сенсори та вимірювальні данні.

src/api/locations/locations.tsx
import type { ILocation } from "../../interfaces/locations";

import type { IRes } from "../../interfaces/response";

export const fetchLocations = async (): Promise<ILocation[]> => {

 const url = import.meta.env.VITE_API_URL;

 const res = await fetch(`${url}/api/locations/all`, {

 method: "GET",

 headers: {

 "Content-Type": "application/json",

 },

 });

 if (!res.ok) {

 throw new Error(

 `Failed to fetch locations: ${res.status} ${res.statusText}`

);

 }

 const body: IRes<ILocation[]> = await res.json();

 return body.data;

};

src/api/sensors/sensors.tsx
import type { IRes } from "../../interfaces/response";

import type { ISensorInfo, ISensors } from "../../interfaces/sensors";

export const fetchSensorsList = async (

 location_id: number

): Promise<ISensors[]> => {

 const url = import.meta.env.VITE_API_URL;

 const res = await fetch(`${url}/api/sensors/all/location/${location_id}`, {

 method: "GET",

 headers: {

 "Content-Type": "application/json",

 },

 });

 if (!res.ok) {

 throw new Error(

 `Failed to fetch locations: ${res.status} ${res.statusText}`

);

 }

 const body: IRes<ISensors[]> = await res.json();

 return body.data;

};

export const fetchSensor = async (

 sensor_id: number

): Promise<ISensorInfo[]> => {

 const url = import.meta.env.VITE_API_URL;

 const res = await fetch(`${url}/api/sensors/sensor/${sensor_id}`, {

 method: "GET",

 headers: {

 "Content-Type": "application/json",

 },

 });

 if (!res.ok) {

 throw new Error(

 `Failed to fetch locations: ${res.status} ${res.statusText}`

);

 }

 const body: IRes<ISensorInfo[]> = await res.json();

 return body.data;

};

export const getData = async (

 sensor_id: number,

 time_from: string,

 time_to: string

): Promise<ISensorInfo[]> => {

 const url = import.meta.env.VITE_API_URL;

 const res = await fetch(

 `${url}/api/sensors/sensor?sensor_id=${sensor_id}&time_from=${time_from}&time_to=${time_to}`,

 {

 method: "GET",

 headers: {

 "Content-Type": "application/json",

 },

 }

);

 if (!res.ok) {

 throw new Error(

 `Failed to fetch locations: ${res.status} ${res.statusText}`

);

 }

 const body: IRes<ISensorInfo[]> = await res.json();

 return body.data;

};

Та відповідні інтерфейси для них:

src/interfaces/sensors.tsx
export interface ISensors {

 code: string;

 fw_version: string;

 id: number;

 location_id: number;

 serial: string;

 type: string;

}

export interface ISensorInfo {

 co_ppm: number;

 humidity_pct: number;

 light_lux: number;

 no2_ppb: number;

 sensor_id: number;

 temperature_c: number;

 ts: string;

 voltage_v: number;

}

 src/interfaces/locations.tsx
 export interface ILocation {

 description: string;

 id: number;

 name: string;

}

 src/interfaces/response.tsx

 export interface IRes<T> {

 data: T;

}

4. Продемонструвати роботу веб застосунку продемонструвавши вкладку network в

DevTools. Та відображення вимірювальної інфомації.

5. Закомітити зміни та запушити на GitHub, cформувати PR описати його(що було

виконано) та дочекатись схвалення викладача на merge. Надіслати на пошту звіт і посилання

на PR.

8.3 Зміст звіту

1. Найменування і мета роботи;

2. Код по кожному пункту порядку виконання роботи;

3. Результати роботи по кожному пункту виконання роботи;

4. Висновки.

8.4 Контрольні запитання

1. Чим відрізняється path (/products/1) від query string (?page=2&limit=20)?

2. У яких випадках логічно використовувати path-параметр, а в яких – query-параметр?

3. Як кодуються спеціальні символи у query-рядку (пробіли, українські букви тощо)?

4. Чому важливо перевіряти та валідовувати значення query-параметрів (тип, діапазон,

обов’язковість) на бекенді? Наведи можливі наслідки відсутності такої валідації.

Додаток 1
import sqlite3

from pathlib import Path

USERS_DB = Path("backend/app/db/users.db")

MEAS_DB = Path("backend/app/db/measurement.sqlite")

def main():

 conn = sqlite3.connect(USERS_DB)

 cur = conn.cursor()

 cur.execute("ATTACH DATABASE ? AS meas", (str(MEAS_DB),))

 tables = cur.execute(

 """

 SELECT name, sql

 FROM meas.sqlite_master

 WHERE type = 'table'

 AND name NOT LIKE 'sqlite_%';

 """

).fetchall()

 for name, create_sql in tables:

 print(f"Обробляю таблицю: {name!r}")

 exists = cur.execute(

 """

 SELECT 1

 FROM sqlite_master

 WHERE type = 'table' AND name = ?;

 """,

 (name,),

).fetchone()

 if not exists:

 if create_sql:

 print(f" Створюю таблицю {name!r} в users.db")

 cur.execute(create_sql)

 else:

 print(f" Таблиця {name!r} вже існує в users.db, пропускаю CREATE TABLE")

 try:

 print(f" Копіюю дані з meas.{name} у {name}")

 cur.execute(f"INSERT INTO {name} SELECT * FROM meas.{name};")

 except sqlite3.Error as e:

 print(f" ПОМИЛКА при копіюванні таблиці {name}: {e}")

 conn.commit()

 cur.execute("DETACH DATABASE meas")

 conn.close()

if __name__ == "__main__":

 main()

Додаток 2

