Існує три концепції для пояснення контролю доступу в кібербезпеці: ідентифікація, автентифікація та авторизація. Хоча ці терміни тісно пов'язані, вони мають відмінності, які необхідно уточнити, щоб добре розуміти правильну термінологію.
Перш ніж пояснювати, що означають ідентифікація, автентифікація та авторизація, слід спочатку визначити дві інші фундаментальні термінології контролю доступу: суб'єкт та об'єкт.
Суб'єкт — це активна сутність, яка має доступ до об'єкта. У прикладі доступу користувача до файлу суб'єктом є користувач. Однак суб'єктом не обов'язково має бути жива сутність, це також може бути програма або процес, який отримує доступ до об'єкта.
Об'єкт — це пасивний компонент, до якого має доступ суб'єкт. Файли, принтери, комп'ютери та бази даних є прикладами об'єктів у механізмі контролю доступу.
Ідентифікація – це процедура розпізнавання суб’єкта. Це може бути досягнуто за допомогою ідентифікатора користувача (наприклад, логіна), ідентифікатора процесу тощо. Дуже важливо, щоб заявлені облікові дані були унікальними, щоб можна було розрізнити різні сутності в системі. Тобто два однакові ідентифікатори, два однакові номери телефонів, дві однакові адреси електронної пошти тощо не можуть бути зареєстровані в системі. Наприклад, під час спроби реєстрації користувач вводить свої дані в поле логіна, а система виділяє поле повідомленням «Такий користувач вже зареєстрований у системі». Це приклад ідентифікації.
Після того, як суб'єкт ідентифікує себе, його необхідно автентифікувати, тобто суб'єкт повинен довести, що він є тим, за кого себе видає. Це підтвердження особи досягається шляхом надання облікових даних механізму контролю доступу. Далі, перед схваленням запиту на автентифікацію перевіряється дійсність наданих облікових даних . Іншими словами, автентифікація визначає, що суб'єкт володіє та контролює надані облікові дані (автентифікатори). Деякими прикладами облікових даних, які можна використовувати для підтвердження особи, є паролі, PIN-коди, цифрові підписи, біометричні дані тощо.
Облікові дані, що використовуються для автентифікації, можна розділити на три різні групи, які також називаються факторами автентифікації:
· Щось, що ви знаєте (фактор знання), наприклад, пароль, персональний ідентифікаційний номер (PIN-код) або парольна фраза. Однак цей тип слабо захищений. Злочинці знаходять способи дізнатися пароль, а відповіді на контрольні питання можуть бути відомі широкому загалу.
· Щось, що у вас є (фактор володіння), наприклад, смарт-картка, карта пам'яті, смарт-картка або токен. Цей метод безпечніший, але його вартість висока.
· Щось, чим ви є (біометрія) (фактор властивості), наприклад, відбиток пальця, топологія долоні, геометрія руки, сканування райдужної оболонки/сітківки або фазове розпізнавання. Цей фактор є досить перспективним, але також дорогим, оскільки біометрична система повинна бути дуже чутливою.
· Щось, що ви робите (поведінкова біометрія) (фактор властивості), наприклад, шаблон друку (динаміка натискання клавіш), шаблон підпису (динаміка підпису) або голосовий шаблон.
Якщо система автентифікації вимагає щонайменше двох типів облікових даних, що належать до різних категорій автентифікації, це називається багатофакторною автентифікацією (MFA). Наприклад, використання пароля (чогось, що ви знаєте) та відбитка пальця (чогось, чим ви є) для автентифікації вважається багатофакторною автентифікацією, тоді як використання пароля та PIN-коду – ні (оскільки і паролі, і PIN-коди належать до одного фактора автентифікації).
Як приклад:
1. Користувач знаходиться на формі авторизації системи.
2. Користувач вводить своє ім'я та пароль (фактор знання).
3. Коли система розпізнає користувача, йому буде запропоновано розпочати другий крок процесу входу в обліковий запис. На цьому етапі потрібно підтвердити наявність предмета, такого як посвідчення особи або смартфон, тобто підтвердити фактор власності. Зазвичай використовується одноразовий код доступу, який надсилається на відповідний номер телефону, а потім використовується для перевірки особи.
4. Нарешті, користувач вводить код доступу, і після того, як сайт його автентифікує, йому надається доступ.

Після автентифікації система знає, хто є суб'єктом, який хоче отримати доступ до об'єкта. Далі авторизація визначає рівень доступу суб'єкта до об'єкта. Іншими словами, авторизація перевіряє наявність прав на взаємодію з об'єктом.
Наприклад, у багаторівневій системі безпеки, де об'єкти позначені різними грифами класифікації (наприклад, Цілком таємно, Секретно, Обмежено, Некласифіковано), той факт, що суб'єкт автентифікований, не обов'язково означає, що він може мати повний доступ (або повні привілеї) до будь-якого об'єкта. У такій системі суб'єктам надається доступ відповідно до їхніх рівнів доступу. Іншим прикладом є привілеї на читання, запис і виконання, призначені суб'єктам керування файловою системою в операційних системах.
Наприклад, ви увійшли як звичайний користувач, але система могла авторизувати вас як адміністратора. У цьому випадку система надала право, наприклад, редагувати або видаляти інформацію.
Це дуже важливо з точки зору безпеки – наскільки коректно система поводиться на етапі ідентифікації, потім на етапі автентифікації та в результаті авторизації.
Тестер перевіряє, чи все йде відповідно до вимог і чи немає помилок, оскільки помилки в етапах ідентифікації/автентифікації/авторизації можуть бути критичними.

Контроль доступу на основі ролей (RBAC)
RBAC (Role-Based Access Control) — це модель керування доступом, у якій повноваження в системі прив’язуються не безпосередньо до окремих користувачів, а до ролей, що відображають їхні функції або посади. Користувач у такій моделі отримує одну або кілька ролей, а кожна роль має заздалегідь визначений набір прав доступу до ресурсів та операцій. Таким чином, доступ визначається не за принципом «користувач → права», а за схемою «користувач → роль → права». Це дозволяє спростити адміністрування, зробити політику безпеки більш прозорою та узгодженою з організаційною структурою. У теоретичній моделі RBAC виділяють чотири основні сутності: користувач (User), роль (Role), право або дозвіл (Permission) і сесія (Session). Користувач — це людський або технічний суб’єкт, який звертається до системи; роль — абстракція, що відображає певну функцію (наприклад, «оператор», «інженер», «адміністратор»); право описує можливість виконати певну дію над певним ресурсом (наприклад, читання вимірювань, зміна конфігурації датчика, редагування користувачів); сесія відображає активний сеанс роботи користувача, у рамках якого він використовує підмножину призначених йому ролей. Формально модель задається відношеннями «користувач–роль» і «роль–право»: одній ролі відповідає множина прав, а одному користувачеві — множина ролей, що дозволяє гнучко комбінувати повноваження.
Важливою теоретичною особливістю RBAC є можливість побудови ієрархії ролей. У рольовій ієрархії старші ролі успадковують права молодших: наприклад, роль «адміністратор» включає всі повноваження ролі «інженер», яка, своєю чергою, включає повноваження ролі «оператор». Це наближає модель доступу до реальної організаційної структури: кожний рівень відповідальності отримує надмножину прав нижчого рівня. У контексті загальної моделі безпеки RBAC логічно інтегрується з етапами ідентифікації та аутентифікації: спочатку суб’єкт ідентифікується (називає свій логін або обліковий запис), потім проходить аутентифікацію (доказує свою особу паролем, токеном, сертифікатом), після чого система, спираючись на призначені цьому обліковому запису ролі, виконує авторизацію, тобто приймає рішення, чи дозволено виконання конкретної операції. Теоретичною перевагою RBAC є зниження складності керування доступом: замість призначення і контролю великої кількості індивідуальних прав на рівні кожного користувача адміністратор оперує відносно невеликою кількістю ролей, для яких один раз формалізуються дозволені дії. Це полегшує формальний аналіз політик безпеки, аудиторську перевірку, а також мінімізує ризик помилок конфігурації, особливо в складних системах, зокрема у інформаційно-вимірювальних комплексах, де необхідно чітко розділяти повноваження між спостерігачами, операторами, інженерами з налаштування та адміністраторами системи.
Сесія в інформаційній системі — це логічний проміжок взаємодії між користувачем (або іншим суб’єктом) і системою від моменту успішної аутентифікації до розриву зв’язку чи виходу користувача. У межах однієї сесії система «пам’ятає», хто саме звертається до неї, які в нього ролі та права, проміжні стани роботи (вибрані налаштування, кошик, відкриті об’єкти, запущені вимірювання тощо). Оскільки, наприклад, протокол HTTP сам по собі є безстанним (кожен запит формально незалежний), для реалізації сесій у веб- та інших мережевих застосунках застосовують спеціальний механізм — Session ID. Session ID — це унікальний і, як правило, криптографічно випадковий ідентифікатор сесії (рядок/токен), який система генерує після успішної аутентифікації користувача та асоціює з певним серверним станом: ідентифікатором користувача, набором його ролей, часом початку сесії, проміжними параметрами роботи. Цей Session ID передається клієнту (частіше за все у вигляді cookie, інколи як параметр запиту чи заголовок) і надалі включається в кожен запит до сервера. Завдяки цьому замість повторної аутентифікації на кожен запит сервер просто знаходить сесію за її ID і відновлює контекст: хто це, які в нього права (RBAC), що він зараз робить.
З точки зору безпеки Session ID розглядається як «квиток доступу» до вже аутентифікованого стану, тому до нього висуваються вимоги: він має бути достатньо довгим і випадковим, щоб його було практично неможливо вгадати перебором; його потрібно передавати по захищеному каналу (HTTPS), захищати від перехоплення (зменшення ризику session hijacking) та фіксації (session fixation). Сесії мають обмежений час життя (timeout): після періоду неактивності або після закінчення загального часу дії сервер видаляє сесійний запис і робить Session ID недійсним — користувачеві потрібно повторно пройти аутентифікацію. У інформаційно-вимірювальних системах сесії використовуються як для людей-операторів (щоб відстежувати, хто саме керує обладнанням і змінює налаштування), так і для технічних клієнтів (SCADA-клієнт, мобільний додаток, сервіс збору даних), де Session ID або аналогічний токен прив’язує потік запитів до конкретного аутентифікованого суб’єкта й його ролі. Таким чином, сесія та Session ID є зв’язною ланкою між разовою аутентифікацією та багаторазовими діями користувача в системі, забезпечуючи як зручність (не потрібно логінитись на кожен запит), так і формальну основу для реалізації авторизації та аудиту дій.
Сесія і JSON Web Token (JWT) — це два різні підходи до того, як “пам’ятати”, що користувач уже пройшов аутентифікацію, і як передавати цю інформацію між клієнтом і сервером.
Сесія (session) — це серверний стан, який створюється після успішної аутентифікації користувача. На сервері зберігається запис: хто це (user_id), які в нього ролі та права (RBAC), які в нього проміжні дані (наприклад, налаштування інтерфейсу, вибрані об’єкти, контекст вимірювань). Клієнту сервер надсилає лише Session ID — випадковий ідентифікатор, який нічого “розумного” про користувача сам по собі не містить. Надалі клієнт додає цей Session ID до кожного запиту (зазвичай у cookie), а сервер по цьому ID знаходить сесію в пам’яті/БД і відновлює контекст: хто це і що йому дозволено. Такий підхід називають стано-орієнтованим (stateful): основна інформація про користувача зберігається на сервері. Перевага — легко “вбити” сесію (просто видалити запис), змінити ролі й права “на льоту”; недолік — сервер мусить зберігати й обслуговувати великий обсяг сесійного стану (особливо при великій кількості користувачів або мікросервісів).

JSON Web Token (JWT) – це безпечний спосіб надсилання інформації між клієнтом і сервером. Він в основному використовується у веб-додатках та API для перевірки користувачів і запобігання несанкціонованому доступу. JWT – це дані JSON, захищені криптографічним підписом.
Підписання може бути здійснено за допомогою таких криптографічних методів:
HMAC (Код автентифікації повідомлень на основі хешу)
RSA або ECDSA (асиметричні криптографічні алгоритми)
JWT складається з трьох частин, розділених крапками (.).
Заголовок: Містить метадані про токен, такі як алгоритм, що використовується для підписання.
Корисне навантаження: Зберігає заяви, тобто дані, що передаються.
Підпис: Забезпечує цілісність та автентичність токена.
1. Заголовок
Заголовок містить метадані про токен, включаючи алгоритм підписання та тип токена, тут метадані означають дані про дані.
{
 "alg":"HS256",
 "typ":"JWT"
​​}
alg : Алгоритм, що використовується для підписання (наприклад, HS256, RS256).
typ : Тип токена, завжди "JWT".

Закодований заголовок Base64Url
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

2. Корисне навантаження(Payload)
Корисне навантаження містить інформацію про користувача, яку також називають заявою, та деяку додаткову інформацію, включаючи позначку часу видачі та час закінчення терміну дії токена.
{
 "userId":123,
 "role":"admin",
 "exp":1672531199
}
1. iss (Issuer): Визначає, хто видав токен.
1. sub (Subject): Представляє користувача або сутність, про яку йдеться в токені.
1. aud (Audience): Визначає цільового одержувача.
1. exp (Expiration): Визначає, коли закінчується термін дії токена.
1. iat (Issued At): Мітка часу створення токена.
1. nbf (Not Before): Визначає, коли токен стає дійсним.

Корисне навантаження, закодоване у форматі Base64Url
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNzA4MzQ1MTIzLCJleHAiOjE3MDgzNTUxMjN9
Перевірити токен :https://www.jwt.io/
Session ID — це “ключ” до стану на сервері, а в випадку JWT сам токен — це “паспорт”, що містить ствердження про користувача й підписаний сервером. У моделі з сесіями авторизація ґрунтується на тому, що сервер по Session ID дістає з бази ролі та права користувача (RBAC), тоді як у моделі з JWT багато чого можна покласти прямо в payload токена (наприклад, список ролей), і сервер просто читає їх після перевірки підпису.
[bookmark: _GoBack]З точки зору безпеки обидва підходи мають свої нюанси. У сесійній моделі основна загроза — викрадення Session ID (session hijacking), тому його передають тільки по HTTPS, роблять HttpOnly-cookie, встановлюють тайм-аути неактивності, а при виході користувача сесію явно видаляють. У моделі з JWT основна проблема — відкликання токенів: якщо користувач вийшов із системи або його права змінилися, “старий” JWT теоретично залишається дійсним до закінчення exp, бо сервер не тримає центрального списку сесій. Це компенсують коротким часом життя access-токена, використанням refresh-токенів, чорними списками (blacklist), ротацією ключів підпису. Важливо також пам’ятати, що стандартний JWT не шифрує payload, а лише підписує його, тому чутливі дані всередину класти не можна: будь-хто, хто отримає копію токена, може прочитати вміст (але не підробити без ключа). Спочатку користувача або пристрій ідентифікують, потім аутентифікують (пароль, сертифікат, ключ), а результат аутентифікації фіксують або у вигляді сесії з Session ID (стан на сервері), або у вигляді підписаного JWT (стан у токені). Далі на кожен запит сервер за Session ID або за JWT відновлює, хто це, які в нього ролі й права, і виконує авторизацію. Вибір між сесіями та JWT у теорії впирається головно в архітектуру системи: централізований моноліт із невеликою кількістю клієнтів часто простіше будувати на класичних сесіях, тоді як розподілені API, мікросервіси, мобільні додатки й пристрої (датчики, контролери) зручно авторизувати через JWT як компактні самодостатні токени доступу.
JWT access token (токен доступу) — це підписаний авторизаційний токен, який безпосередньо використовується для доступу до захищених ресурсів та API. Він містить основні claims, потрібні ресурсному серверу: ідентифікатор суб’єкта (sub), час закінчення дії (exp), час видачі (iat), а також інформацію для керування доступом — ролі, права, області доступу (roles, scope, permissions). Access token зазвичай має малий строк життя (від кількох хвилин до десятків хвилин), що зменшує наслідки його можливої компрометації: навіть якщо токен буде перехоплений, зловмисник зможе використовувати його лише в обмеженому часовому вікні. Ресурсні сервери при кожному запиті перевіряють криптографічний підпис access token і, довіряючи авторизаційному серверу, приймають рішення про авторизацію на основі вмісту токена, не звертаючись до централізованого сховища сесій.
JWT refresh token (токен оновлення) виконує іншу функцію: він не призначений для безпосереднього доступу до бізнес-ресурсів, а використовується для отримання нових access token після закінчення строку їх дії. Refresh token має значно довший строк життя (години, дні або тижні) і передається на сервер лише при виконанні спеціальної операції оновлення (наприклад, запит до /auth/refresh). На теоретичному рівні refresh token можна розглядати як довгострокове підтвердження автентичності, яке зберігається у більш захищеному контексті (HttpOnly-cookie, без розгортання на клієнтському JavaScript) та контролюється авторизаційним сервером: він може зберігатися (або його хеш) у базі даних, мати власний ідентифікатор (jti), бути від Revoke-нутим у разі логауту, компрометації чи зміни прав користувача. На відміну від access token, payload refresh token, як правило, мінімальний: достатньо ідентифікатора суб’єкта та самого токена, вся актуальна інформація про ролі й права при оновленні береться з серверного джерела істини.
Схема спільного використання access token і refresh token дозволяє узгодити вимоги безпеки та зручності. Користувач один раз проходить аутентифікацію (логін/пароль, інші фактори), після чого авторизаційний сервер видає пару токенів. Короткоживучий access token використовується для щоденної роботи — підписує запити до захищених endpoint’ів, забезпечуючи безстанову (stateless) авторизацію: достатньо перевірити підпис і строк дії токена. Коли access token протерміновується, клієнт без повторного введення облікових даних звертається до авторизаційного сервера з refresh token і, у разі його валідності, отримує нову пару токенів. Таким чином знижується навантаження на сервер аутентифікації, зберігається зручність для користувача, але критично важлива інформація про те, кому і які права належать, завжди може бути переобчислена на боці сервера (рольова модель RBAC, актуальний стан облікового запису).
З погляду безпеки, принципова різниця між цими токенами полягає не лише в строку їх дії, а й у режимах використання та контролю. Access token — це “короткостроковий пропуск”, який часто циркулює мережею і тому повинен бути максимально короткоживучим; refresh token — “довгострокова довіреність”, яка повинна зберігатися вузько й контролюватися більш суворо, з можливістю ревокації, ротації та додаткових перевірок (прив’язка до пристрою, IP-адреси, відбитка клієнта тощо). Поєднання цих двох компонентів у єдиній JWT-моделі дозволяє будувати розподілені, масштабовані, безстанові системи авторизації, зберігаючи при цьому можливість централізованого керування життєвим циклом сесій і доступу користувачів.
Cookie (HTTP-cookie) — це невеликий фрагмент даних у форматі name=value, який зберігається у браузері та автоматично додається до кожного HTTP-запиту до відповідного сайту. По суті, це механізм “пам’яті” для вебу: протокол HTTP сам по собі безстанний (кожен запит незалежний), а cookie дозволяють сайту “пізнавати” користувача між запитами — тримати сесію, налаштування, кошик тощо. Коли сервер хоче встановити cookie, він надсилає заголовок Set-Cookie у відповіді, браузер зберігає значення, а надалі додає його в заголовок Cookie при кожному запиті до того ж домену й шляху.
Кожне cookie має атрибути, які визначають його поведінку:
· Expires / Max-Age — час життя (якщо не задано, це session cookie, яке зникає після закриття браузера; якщо задано — persistent cookie зберігається довше).
· Domain і Path — для яких піддоменів і шляхів URL це cookie буде надсилатися.
· Secure — cookie передається тільки по HTTPS, не відправляється по нешифрованому HTTP.
· HttpOnly — до cookie немає доступу з JavaScript (через document.cookie), воно доступне лише браузеру та серверу; це важливий захист від XSS, щоб зловмисний скрипт не зміг украсти, наприклад, Session ID.
· SameSite — обмежує відправку cookie в крос-сайтових запитах і допомагає захищатися від CSRF-атак (Strict, Lax, None).
Типові призначення cookie:
1. Керування сесіями — сервер зберігає стан сесії в себе, а користувачу віддає лише session_id в cookie; при кожному запиті за цим ID знаходиться користувач, його ролі, кошик тощо.
2. Зберігання налаштувань — мова інтерфейсу, тема, останні фільтри.
3. Автентифікація/авторизація — у cookie можуть зберігати JWT (access/refresh токени), хоча з точки зору безпеки їх зазвичай кладуть саме в HttpOnly Secure cookie, щоб мінімізувати ризик витоку.
4. Аналітика і трекінг — ідентифікатори для систем статистики, реклами, A/B-тестів тощо.
У контексті безпеки важливо розуміти, що cookie — це просто механізм передачі даних, “конверт”, а не сама автентифікація. Безпечність залежить від того, що ми туди кладемо (Session ID, JWT) і як налаштовуємо атрибути (Secure, HttpOnly, SameSite). Якщо чутливі токени зберігати в незахищених cookie або давати до них доступ JavaScript’у, їх легко може перехопити шкідливий код чи атака типу man-in-the-middle. Тому в теорії веб-безпеки cookie розглядають як базовий механізм підтримки стану та сесій, до якого висувають суворі вимоги щодо конфігурації й використання в комбінації з SSL/TLS та іншими захисними механізмами.
XSS (Cross-Site Scripting) – це клас вразливостей веб-додатків, при якому зловмисник змушує браузер користувача виконати шкідливий JavaScript-код у контексті довіреного сайту. Ключова ідея: браузер не розрізняє, хто написав код – розробник чи зловмисник – якщо цей код потрапив у сторінку з того ж домену. Внаслідок цього зловмисник може отримати доступ до даних сесії, токенів, конфіденційної інформації, змінювати вміст сторінки, виконувати дії від імені користувача.
Основою XSS є порушення принципу «дані ≠ код». Веб-додаток приймає дані від користувача (через форму, параметри URL, cookie, заголовки), а потім відображає їх на сторінці, але не виконує належної екранізації (escaping) та перевірки. У результаті частина цих даних інтерпретується браузером не як текст, а як JavaScript, HTML або інші інструкції. Типова ситуація: у незахищене текстове поле користувач замість звичайного тексту вводить фрагмент коду, а сервер «повертає» його на сторінку як частину відповіді.
Розрізняють кілька основних типів XSS. Stored (збережений) XSS – коли шкідливий код зберігається на сервері (у БД, файлі, CMS) і потім автоматично вбудовується в сторінки, що відображаються багатьом користувачам. Наприклад, зловмисник залишив «коментар» зі шкідливим скриптом – кожен, хто відкриє сторінку з цим коментарем, автоматично виконає цей код. Reflected (відображений) XSS – коли шкідливий код передається у запиті (через параметр URL, форму пошуку тощо) і відразу ж «відображається» у відповіді без збереження. Тут зловмисник зазвичай формує спеціальне посилання і змушує жертву перейти за ним (через email, соцмережі та ін.). DOM-based XSS – коли вразливість виникає уже на рівні JavaScript у браузері: скрипт на стороні клієнта бере дані з DOM (наприклад, location.hash, document.cookie, innerHTML) і небезпечно вставляє їх назад у DOM або виконує як код без участі сервера. У всіх випадках результат один – виконання шкідливого коду в контексті домену вразливого сайту.
Джерелами XSS є будь-які дані, яким «довіряє» додаток: текстові поля, параметри запиту, кукі, дані, що приходять з інших сервісів, навіть лог-файли або аналітика, які потім виводяться на адміністративних сторінках. Типовою помилкою є пряме використання цих даних в HTML-шаблонах без екранізації, а також застосування небезпечних API на фронтенді – наприклад, innerHTML, document.write, eval, Function, створення елементів із конкатенацією строк, куди входять неконтрольовані дані. Особливо часто XSS виникає при відображенні «багатого контенту» (коментарі, опис товару, WYSIWYG-редактори), де розробник дозволяє HTML, але слабо фільтрує його.
Наслідки XSS для користувача й системи можуть бути дуже серйозними. Зловмисник може викрасти ідентифікаційні дані (cookie, токени, localStorage), навіть якщо користувач не натискає жодних кнопок – код просто виконається при завантаженні сторінки. Далі можливі дії від імені користувача: зміна пароля, надсилання даних, створення замовлень, доступ до особистої інформації. Також XSS дозволяє модифікувати DOM сторінки для фішингу: підмінити форму входу, підставити фейкові повідомлення, показати додаткові поля для введення номера картки тощо. Ще один важливий наслідок – XSS часто використовується як «місток» для обходу інших механізмів безпеки: можна виконати CSRF-атаки через скрипт, підключити сторонні ресурси, завантажити шкідливий код, зробити скріншоти, логувати натискання клавіш усередині сторінки.
Захист від XSS базується на кількох принципах. Перший – нульова довіра до вхідних даних: будь-які дані, що надходять від користувачів або зовнішніх джерел, вважаються потенційно шкідливими. Другий – контекстно-залежна екранізація (output encoding). Важливо не просто «зафільтрувати небезпечні символи», а правильно екранувати дані залежно від того, де вони вставляються: у HTML-текст, HTML-атрибут, JavaScript-рядок, CSS або URL. Для HTML-контенту потрібно перетворювати <, >, &, ", ' у відповідні HTML-сущності; для атрибутів – додатково уникати небезпечних послідовностей; для JavaScript-контексту – екранувати символи, що можуть «вийти» з рядка. Третій принцип – мінімізація використання небезпечних API: замість innerHTML краще використовувати textContent або безпечні шаблонізатори, які автоматично екранують дані.
Серйозну роль відіграють і HTTP-заголовки безпеки. Content-Security-Policy (CSP) дозволяє задати політику, яка обмежує джерела скриптів (наприклад, дозволяти тільки скрипти з того ж домену, заборонити inline-скрипти або вимагати використання nonce/хешів). Правильно налаштований CSP суттєво ускладнює реалізацію XSS навіть при наявності вразливостей. Атрибут HttpOnly для cookie забороняє доступ до них із JavaScript, зменшуючи ризик їх викрадення. Secure і SameSite допомагають захистити cookie від мережевих атак та CSRF. Важливо також уникати inline-JavaScript (onclick, onload у HTML, <script>...</script> з динамічним вмістом) і зовнішніх скриптів із неперевірених джерел.
Сучасні фреймворки фронтенду й бекенду частково знижують ризики XSS, але не усувають їх повністю. Наприклад, React за замовчуванням екранує значення, вставлені в JSX, але будь-яке використання dangerouslySetInnerHTML або прямого вставляння HTML повертає нас у зону ризику. Шаблонізатори на бекенді (Jinja2, Twig, Handlebars та ін.) також зазвичай виконують екранізацію за замовчуванням, проте розробник може її відключити (наприклад, через «safe»-флаг). Для даних, що дозволяють обмежений HTML (WYSIWYG-редактори, markdown-поля), рекомендується використовувати спеціальні бібліотеки санітизації, які «очищають» HTML від небезпечних тегів і атрибутів, залишаючи тільки безпечні.
У процесі розробки й експлуатації необхідно систематично тестувати застосунок на XSS-вразливості. Це включає як ручне тестування (спроби вводити спеціальні символи, HTML-фрагменти в поля), так і використання автоматизованих сканерів безпеки. Корисно включати захист від XSS у стандартні код-рев’ю: перевіряти будь-які місця, де дані користувача потрапляють у DOM, HTML, JavaScript, а також уважно ставитися до будь-яких «винятків» з політик екранізації (наприклад, тимчасове відключення фільтра в адмін-панелі).
CSRF (Cross-Site Request Forgery) – це вразливість веб-застосунків, при якій зловмисник змушує браузер користувача виконати запит до легітимного сайту, на якому користувач уже автентифікований (залишився залогіненим), без усвідомленого наміру користувача. Ключова ідея: браузер автоматично додає cookie, сесійні ідентифікатори та інші креденшали до кожного запиту на відповідний домен, незалежно від того, з якої сторінки цей запит ініційовано – з чесного сайту чи з фішингового. Сервер бачить «правильні» cookie й сприймає запит як такий, що походить від легітимної взаємодії користувача з інтерфейсом.
Для CSRF потрібні три умови: по-перше, користувач має бути автентифікованим у цільовому застосунку (активна сесія, авторизаційні cookie або інший автоматичний механізм), по-друге, застосунок повинен приймати стано-змінюючі запити (наприклад, зміна email, пароля, переказ коштів, налаштування доступу) без додаткового підтвердження наміру (натискання унікальної кнопки, введення пароля повторно, токена тощо), і по-третє, сервер не повинен мати надійного механізму перевірки, що запит ініційовано саме з «правильної» форми на сайті, а не зі стороннього ресурсу. Зловмисник використовує це, формуючи спеціальну форму або запит на своєму сайті чи в email, і змушує жертву відкрити сторінку; браузер жертви автоматично надішле запит до довіреного сайту разом із сесійними cookie.
Класичний приклад: користувач залогінений у інтернет-банкінгу і має активну сесію. Зловмисник надсилає йому посилання на «акцію» або «знижку», де захована HTML-форма з методом POST на адресу банку /transfer, у якій вже зафіксовано реквізити зловмисник а та суму, а форма автоматично відправляється через JavaScript при завантаженні сторінки. Коли користувач відкриває цю сторінку, його браузер відправляє POST-запит на банк з усіма легітимними cookie, і банк виконує переказ, вважаючи, що користувач сам натиснув кнопку «Переказати». Аналогічно можна змінити email-адресу, пароль, API-ключі, налаштування доступу до приладів в інформаційно-вимірювальних системах (наприклад, дистанційно зупинити вимірювальний модуль чи змінити порогові значення).
Важливо розуміти відмінність між CSRF та XSS. XSS дозволяє зловмисник у виконати свій код всередині сторінки довіреного сайту (тобто зловмисник «заходить в браузер» через DOM і JavaScript). CSRF не вимагає виконання коду на уразливому сайті – воно використовує браузер як «чорний ящик», який слухняно підписує своїми cookie будь-які запити до відповідного домену, навіть якщо вони ініційовані зі сторонньої сторінки. Тобто XSS – це компрометація клієнтського коду на сайті, а CSRF – компрометація наміру користувача (змушують виконати дію, яку він не хотів робити).
Головна причина можливості CSRF – автоматична відправка браузером автентифікаційних даних. Це перш за все стосується cookie з сесійним ідентифікатором, але також може включати базову HTTP-автентифікацію, клієнтські сертифікати тощо. Браузер, дотримуючись політики Same-Origin Policy, не дозволяє сторонньому сайту читати відповідь банківського сайту чи його кукі, але він не забороняє сторонньому сайту робити <form action="https://bank.example/transfer" method="post"> або . У результаті зловмисник не бачить відповіді, але це й не потрібно – важливо лише спровокувати стано-змінюючий запит.
Захист від CSRF базується насамперед на введенні додаткового маркера (CSRF-токена), який підтверджує, що запит сформовано справжньою формою з сайту, а не сторонньою сторінкою. Найпоширеніший підхід – synchronizer token pattern: для кожної сесії чи навіть окремої форми сервер генерує криптографічно стійкий випадковий токен, зберігає його в сесії користувача та вбудовує в HTML-форми як приховане поле. При відправці форми сервер перевіряє, чи збігається токен у тілі запиту з токеном у сесії. Сторонній сайт не може прочитати сторінку та дізнатися значення цього токена через політику Same-Origin, отже не може сформувати коректний запит. Варіація цього підходу – «double submit cookie»: токен зберігається і в cookie, і в параметрі запиту/тіла, сервер порівнює ці два значення.
SQL Injection (SQL-інʼєкція) – це клас вразливостей, за якого дані користувача потрапляють у SQL-запит таким чином, що частина цих даних інтерпретується СУБД як команди, а не як звичайні значення. Вразливість виникає тоді, коли застосунок будує SQL-запити динамічно (через конкатенацію рядків, форматування), не відокремлюючи чітко програмний код від вхідних даних. У результаті порушується модель безпеки «дані ≠ код», і користувач може змінити структуру запиту до бази.
З погляду логіки роботи застосунку, SQL Injection дозволяє обійти механізми авторизації й контролю доступу на рівні бізнес-логіки, оскільки СУБД виконує змінений запит, керуючись лише синтаксисом SQL, а не задумом розробника. Це може призвести до читання конфіденційних даних (конфіденційність), несанкціонованої модифікації записів (цілісність) або видалення/блокування структур даних (доступність). У термінах класичної моделі CIA порушуються всі три компоненти.
Розрізняють кілька підтипів SQL Injection. До in-band відносять атаки, коли результат відразу повертається в тій самій відповіді (наприклад, через об’єднання результатів різних запитів в один). Error-based інʼєкції базуються на отриманні детальних системних повідомлень про помилки, що дозволяє по них відновлювати структуру БД. Blind SQL Injection застосовують тоді, коли безпосередній вивід відповіді недоступний або обмежений: зловмисник змінює запити так, щоб за побічними ознаками (відмінність у поведінці сторінки, час відповіді, наявність/відсутність певних елементів) поступово відновлювати інформацію. Також виділяють out-of-band техніки, де для передачі результатів використовується інший канал (наприклад, DNS-запити).
Основними причинами виникнення SQL Injection є: використання динамічних запитів, побудованих шляхом простого «склеювання» рядків; відсутність параметризації; відсутність або формальний характер валідації вхідних даних; надання обліковому запису БД надмірних привілеїв (можливість виконувати операції DROP, ALTER, створювати нові користувачі тощо). Додатковим фактором ризику є докладні текстові повідомлення про помилки, які відображаються користувачеві, – вони значно полегшують підбір коректних інʼєкцій.
Захист від SQL Injection базується на принциповому розділенні коду і даних. Ключовим механізмом є параметризовані запити (prepared statements), коли структура запиту визначається заздалегідь, а значення параметрів передаються окремо й ніколи не інтерпретуються як частина SQL-синтаксису. Використання ORM та query builder’ів також, як правило, будується на параметризації. Додатковими заходами є: жорстка валідація введення (перевірка типів, форматів, допустимих діапазонів та списків значень), принцип мінімальних привілеїв для облікових записів БД, відключення можливості виконувати кілька SQL-інструкцій в одному запиті, обмеження детальних повідомлень про помилки в продуктивному середовищі, а також періодичне застосування засобів статичного й динамічного аналізу безпеки для виявлення уразливих місць у коді.
DTO контролер часто напряму бере req.body, req.query або POST-параметри й вставляє їх у SQL-рядок. У цій схемі «сирі» дані користувача змішуються з SQL-кодом і утворюють класичну SQL-інʼєкцію. DTO вводить проміжний рівень: будь-які дані ззовні спочатку мають бути спроєктовані у форму DTO-класу (поля, типи, обмеження), пройти валідацію, і тільки потім у вже перевіреному вигляді передаються далі, у сервіс / репозиторій. У результаті код, який формує SQL, працює не з «хаотичним JSON із запиту», а з об’єктом із чітко визначеними типами й дозволеними значеннями.
У класичній моделі “Controller → Service → Repository” DTO стає єдиною вхідною точкою для даних з клієнта. На рівні DTO накладають обмеження: максимальна довжина, дозволений набір символів, перелік допустимих значень (enum), типи (число, дата, логічне). Це вже саме по собі відсікає значну частину атак типу "' OR '1'='1" як некоректне введення, або хоча б не дає таким конструкціям “гуляти” по коду без контролю. Крім того, коли логіка побудови запитів спирається на DTO, стає природним використовувати параметризовані запити: WHERE id = :id, де id – це поле DTO з типом number, а не довільний фрагмент рядка. Тобто DTO задає “контракт”, а механізм доступу до БД реалізує підстановку тільки як значень параметрів, а не фрагментів SQL.
Важливий ефект DTO – чисте розділення відповідальностей. DTO відповідає лише за форму й валідацію даних, репозиторій – за взаємодію з БД, причому в ньому легко зафіксувати правило: “тільки параметризовані запити, ніколи не конкатенуємо рядки з полями DTO”. Коли це правило підтримується на рівні архітектури/код-ревʼю, DTO фактично стає “фільтром” між зовнішніми даними й SQL-шаром: будь-яка спроба передати у запит щось, що не вкладається в модель (наприклад, «імʼя поля» або фрагмент ORDER BY ...; DROP TABLE), просто не пройде через DTO або буде інтерпретована як звичайний текстовий параметр, а не код.
Brute-force (груба сила) – це клас атак, при яких зловмисник сліпо перебирає всі можливі варіанти якогось секрету (пароль, PIN, ключ шифрування тощо), поки не знайде той, який підходить. Ключова ідея: замість хитрої логіки використовується масовий перебір – багато спроб з різними значеннями, розрахованих на те, що рано чи пізно одна з них буде правильною.
З точки зору моделі безпеки, brute-force експлуатує не логічну помилку в системі, а обмежену розмірність простору секретів. Якщо пароль короткий, простий або криптографічний ключ має малу довжину, кількість можливих варіантів невелика, і їх можна перебрати за прийнятний час з використанням сучасних обчислювальних ресурсів. В ідеальній системі brute-force має бути теоретично можливим (простір усіх комбінацій завжди скінченний), але практично нереалістичним – час і ресурси, необхідні для повного перебору, повинні бути астрономічними.
Brute-force особливо часто розглядають у двох контекстах. Перший – це атаки на автентифікацію (логін/пароль, PIN-коди, коди доступу). Тут зловмисник намагається багаторазово ввести різні паролі до того моменту, поки система не прийме один із них як правильний. Якщо немає обмежень на кількість спроб, відсутні затримки або блокування облікового запису, а користувач використовує слабке або коротке значення, brute-force стає практичною загрозою. Другий контекст – атаки на криптографічні примітиви (ключі шифрування, криптографічні хеші). У цьому випадку зловмисник перебирає всі можливі ключі певної довжини до тих пір, поки не знайде той, який розшифровує дані коректно. Стійкість криптосхеми в цьому сенсі формулюється як неможливість здійснити повний перебір за реалістичний час.
Важливо відрізняти brute-force від словникових атак і credential stuffing. У словниковій атаці перебір ведеться не по всьому просторі можливих комбінацій, а по заздалегідь підготовленому списку «типових» паролів (часто використовується статистика витоків): це оптимізований різновид brute-force з пріоритезацією найімовірніших варіантів. Credential stuffing – це автоматичне використання вже відомих пар логін/пароль, отриманих із інших сервісів, без генерації нових комбінацій. Класичний brute-force математично вважає, що всі комбінації однаково ймовірні й просто перебирає їх систематично.
Атаки brute-force поділяють на on-line та off-line. On-line brute-force – це перебір безпосередньо проти живого сервісу (веб-форми входу, API, SSH-сервера тощо); його ефективність обмежена швидкістю відповіді системи, механізмами блокування та журналювання. Off-line brute-force виконується на стороні зловмисник а над заздалегідь отриманими даними – наприклад, над файлом із хешами паролів або над зашифрованим архівом. У цьому випадку швидкість повністю визначається ресурсами, які може залучити зловмисник (CPU, GPU, FPGA, кластер), і система не “бачить” спроб атаки, поки результат не буде використано.
Clickjacking – це атака на інтерфейс користувача (UI), при якій зловмисник змушує користувача клікнути по елементу легітимного сайту, але в такому контексті, в якому користувач не усвідомлює, по чому саме він натискає. Іншими словами, це «перехоплення кліку»: користувач думає, що натискає звичайну кнопку/посилання на сторінці зловмисник а, а насправді натискає на невидимий або напівпрозорий елемент іншого сайту, вбудований у цю сторінку.
Механізм атаки (UI redressing)
Класична схема clickjacking:
1. Є цільовий сайт, де виконуються важливі дії:
· «Підтвердити платіж»;
· «Змінити email/пароль»;
· «Надати права адміністрування»;
· «Увімкнути/вимкнути пристрій» у ІВС.
2. Зловмисник створює свою сторінку, на якій показує щось привабливе:
· кнопку «Отримати бонус»;
· «Подивитися відео»;
· «Поставити лайк» тощо.
3. Усередині цієї сторінки він вставляє iframe з цільовим сайтом:
· задає йому opacity: 0 або робить дуже прозорим;
· вирівнює iframe так, щоб важлива кнопка цільового сайту опинилася прямо під курсором у потрібному місці.
4. Користувач бачить тільки «красиву» кнопку нападника і натискає її.
Фактично клік потрапляє по прихованій кнопці всередині iframe з цільового сайту.
Таким чином, зловмисник не краде сесію і не виконує власний код у домені жертви (як XSS) – він змушує самого користувача, зі своєю легітимною сесією, виконати небажану дію, «перефарбувавши» інтерфейс так, щоб користувач помилився.
Це часто називають UI redressing – «перевдягання інтерфейсу».

