Розділ 1. ЛІНІЙНА АЛГЕБРА

1. Дії над матрицями

Матрицею розміру $m \times n$ називають прямокутну таблицю чисел, в якій $m$ рядків та $n$ стовпців:

$$A = \begin{pmatrix}
    a_{11} & a_{12} & \ldots & a_{1n} \\
    a_{21} & a_{22} & \ldots & a_{2n} \\
    \vdots & \vdots & \ddots & \vdots \\
    a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix},$$

або коротко $A = (a_{ij})_{m \times n}$.

Над матрицями виконують дії додавання, віднімання, множення, множення на число, транспонування.

Добуток матриці $A = (a_{ij})_{m \times n}$ на число $\alpha$ – це матриця $\alpha A = (\alpha a_{ij})_{m \times n}$, тобто кожен елемент матриці $A$ слід помножити на $\alpha$.

Сума (різниця) матриць $A = (a_{ij})_{m \times n}$ та $B = (b_{ij})_{m \times n}$ – це матриця $A + B = (a_{ij} + b_{ij})_{m \times n}$ ($A - B = (a_{ij} - b_{ij})_{m \times n}$), тобто для знаходження суми (різниці) матриць $A$ і $B$ слід додати (відняти) їх відповідні елементи. Сума та різниця визначені для матриць однакового розміру.

Добутком матриці $A = (a_{ij})_{m \times p}$ на матрицю $B = (b_{ij})_{p \times n}$ називають матрицю $C = AB$ розміру $m \times n$, елементи $c_{ij}$ якої обчислюються за правилом: $c_{ij}$ є сумою попарних добутків елементів $i$-го рядка матриці $A$ та відповідних елементів $j$-го стовпця матриці $B$.

Добуток $AB$ визначений, якщо число стовпців матриці $A$ дорівнює числу рядків матриці $B$. В загальному випадку $AB \neq BA$.

Транспонування матриці: якщо рядки матриці $A$ записати як стовпці (зберігаючи порядок), то отриману матрицю називають транспонованою до матриці $A$ і позначають $A^T$. Відзначимо, що якщо $A$ – матриця розміру $m \times n$, то $A^T$ – матриця розміру $n \times m$.

1. Знайти матрицю $2A$, якщо $A = \begin{pmatrix}
-1 & 5 & 2 \\
2 & 3 & -3
\end{pmatrix}$.

$$2A = \begin{pmatrix}
2(-1) & 2 \cdot 5 & 2 \cdot 2 \\
2 \cdot 2 & 2 \cdot 3 & 2 \cdot (-3)
\end{pmatrix} = \begin{pmatrix}
-2 & 10 & 4 \\
4 & 6 & -6
\end{pmatrix}. $$
2. Знайти матрицю $A + B$, якщо
\[
A = \begin{pmatrix}
0 & 1 & 8 \\
-1 & -2 & 6 \\
3 & -4 & 0
\end{pmatrix}, \quad B = \begin{pmatrix}
-2 & 2 & -1 \\
-3 & 0 & 4 \\
1 & -3 & 1
\end{pmatrix}.
\]
\[
A + B = \begin{pmatrix}
0+(-2) & 1+2 & 8+(-1) \\
-1+(-3) & -2+0 & 6+4 \\
3+1 & -4+(-3) & 0+1
\end{pmatrix} = \begin{pmatrix}
-2 & 3 & 7 \\
-4 & -2 & 10 \\
4 & -7 & 1
\end{pmatrix}.
\]

3. Знайти $A - B$, якщо $A = \begin{pmatrix}
-2 & 0 \\
1 & 3
\end{pmatrix}$, $B = \begin{pmatrix}
-1 & 6 \\
3 & 2
\end{pmatrix}$.
\[
A - B = \begin{pmatrix}
5-(-2) & 4-1 \\
-2-(-1) & 0-6 \\
1-3 & 3-2
\end{pmatrix} = \begin{pmatrix}
7 & 3 \\
-1 & -6 \\
-2 & 1
\end{pmatrix}.
\]

4. Обчислити $AB$, якщо:
   a) $A = \begin{pmatrix}
1 & 0 & -1 \\
2 & -2 & 3
\end{pmatrix}$, $B = \begin{pmatrix}
-1 \\
1
\end{pmatrix}$;  
   b) $A = \begin{pmatrix}
-1 & 1 & 2 \\
2 & -1 & -1
\end{pmatrix}$, $B = \begin{pmatrix}
1 & 3 \\
0 & 2
\end{pmatrix}$.
\[
a) \begin{pmatrix}
1 & 0 & -1 \\
2 & -2 & 3
\end{pmatrix} \cdot \begin{pmatrix}
-1 \\
1
\end{pmatrix} = \begin{pmatrix}
1 \cdot (-1) + 0 \cdot (-2) + (-1) \cdot 1 \\
2 \cdot (-1) + (-2) \cdot (-1) + 3 \cdot 1
\end{pmatrix} = \begin{pmatrix}
-2 \\
5
\end{pmatrix};
\]
\[
b) \begin{pmatrix}
-1 & 1 & 2 \\
2 & -1 & -1
\end{pmatrix} \cdot \begin{pmatrix}
1 & 3 \\
0 & 2 \\
1 & -1
\end{pmatrix} = \begin{pmatrix}
((-1) \cdot 1 + 1 \cdot 0 + 2 \cdot 1) & (-1) \cdot 3 + 1 \cdot 2 + 2 \cdot (-1)
\end{pmatrix} =
\]
\[
= \begin{pmatrix}
1 & -3
\end{pmatrix}.
\]

5. Знайти $AB$ та $BA$, якщо $A = \begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}$, $B = \begin{pmatrix}
2 & 1 \\
-1 & 3
\end{pmatrix}$.
\[
AB = \begin{pmatrix}
1 \cdot 2 + 2 \cdot (-1) & 1 \cdot 1 + 2 \cdot 3 \\
3 \cdot 2 + 4 \cdot (-1) & 3 \cdot 1 + 4 \cdot 3
\end{pmatrix} = \begin{pmatrix}
0 & 7 \\
2 & 15
\end{pmatrix};
\]
\[
BA = \begin{pmatrix}
2 \cdot 1 + 1 \cdot 3 & 2 \cdot 2 + 1 \cdot 4 \\
(-1) \cdot 1 + 3 \cdot 3 & (-1) \cdot 2 + 3 \cdot 4
\end{pmatrix} = \begin{pmatrix}
5 & 8 \\
8 & 10
\end{pmatrix}.
\]
Отже, $AB \neq BA$.  \]
6. Обчислити $AB$, якщо $A = \begin{pmatrix} 2 & -1 \\ -1 & 1 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$.

$$AB = \begin{pmatrix} 2 & -1 \\ -1 & 1 \\ 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2 \cdot (-1) + (-1) \cdot (-2) & 2 \cdot (-1) + (-1) \cdot 1 \\ (-1) \cdot (-1) + 1 \cdot (-2) & (-1) \cdot 1 + 1 \cdot 1 \\ 0 \cdot (-1) + 3 \cdot (-2) & 0 \cdot (-1) + 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ -6 & 3 \end{pmatrix}.$$

7. Обчислити добуток матриць $A$ та $B$, якщо

$$A = \begin{pmatrix} -1 & 1 & 0 \\ 2 & 1 & 3 \\ 4 & 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & -1 \\ 2 & 1 & 1 \end{pmatrix}.$$

$$AB = \begin{pmatrix} -1 & 1 & 0 \\ 2 & 1 & 3 \\ 4 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & -1 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} (-1) \cdot 1 + 1 \cdot (-1) + 2 \cdot 0 & (-1) \cdot 1 + 1 \cdot 0 + 0 \cdot 1 & (-1) \cdot 2 + 1 \cdot (-1) + 1 \cdot 0 \\ 2 \cdot (-1) + 1 \cdot 3 + 2 \cdot 2 & 2 \cdot (-1) + 1 \cdot 0 + 3 \cdot 1 & 2 \cdot 2 + 1 \cdot (-1) + 3 \cdot 1 \\ 4 \cdot 1 + 3 \cdot (-1) + 1 \cdot 2 & 4 \cdot 1 + 3 \cdot 0 + 1 \cdot 1 & 4 \cdot 2 + 3 \cdot (-1) + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} -2 & -1 & -3 \\ 7 & 5 & 6 \\ 3 & 5 & 6 \end{pmatrix}.$$
\[
\begin{bmatrix}
4 & 46 & -15 & -35 \\
-60 & -20 & -91 & -53
\end{bmatrix}.
\]

9. Знайти \(A^T\), якщо: а) \(A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}\); б) \(A = \begin{bmatrix} 2 & 0 \\ -1 & 4 \\ 1 & 3 \end{bmatrix}\).

а) Записуючи перший та другий рядки матриці \(A\) відповідно як перший та другий стовпці, дістанемо \(A^T = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}\).

б) Аналогічно знаходимо \(A^T = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 4 & 4 \\ 1 & 3 & 3 \end{bmatrix}\).

Вправи для самостійного розв’язання

10. Обчислити \((-2)A\), якщо \(A = \begin{bmatrix} -1 & 1 \\ 2 & 4 \\ 3 & -2 \end{bmatrix}\).

11. Обчислити \(A - B\), якщо

\[
A = \begin{bmatrix}
0 & -2 & 1 & 3 \\
2 & 0 & 1 & 1 \\
-1 & -2 & 1 & 1
\end{bmatrix}, \quad B = \begin{bmatrix}
-2 & 2 & 4 \\
1 & 3 & 2 & -1 \\
1 & -1 & -1 & -3
\end{bmatrix}.
\]

12. Обчислити \(2A + 3B\), якщо \(A = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}\), \(B = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}\).

Обчислити добуток \(AB\) заданих матриць:

13. а) \(A = \begin{bmatrix} -3 & 3 & 4 \\ 6 & -6 \end{bmatrix}\); б) \(A = \begin{bmatrix} -1 & 6 & -4 \\ -5 & 10 & -8 \end{bmatrix}\), \(B = \begin{bmatrix} 7 \\ -6 \\ -2 \end{bmatrix}\).

14. \(A = \begin{bmatrix} 8 & 5 & -7 \\ 7 & -8 & -5 \end{bmatrix}\), \(B = \begin{bmatrix} -7 & 1 & 3 & 9 \\ -6 & 3 & 1 & 9 \\ 7 & -6 & -1 & 0 \end{bmatrix}\).
15. $A = \begin{pmatrix} -3 & 3 \\ 4 & 5 \\ 3 & 6 \end{pmatrix}$, $B = \begin{pmatrix} -6 & -10 \\ -8 & 1 \end{pmatrix}$.

16. $A = \begin{pmatrix} 6 & -4 \\ 5 & -10 \\ -8 & 7 \end{pmatrix}$, $B = \begin{pmatrix} -6 & -2 \\ 8 & 5 \end{pmatrix}$.

17. $A = \begin{pmatrix} -3 & 3 \\ 4 & 5 \\ 3 & 6 \\ -6 & -10 \end{pmatrix}$, $B = \begin{pmatrix} -8 & -1 & 6 \end{pmatrix}$.

18. Знайти $A^T$, якщо: а) $A = \begin{pmatrix} 2 & 1 \\ 5 & 4 \end{pmatrix}$; б) $A = \begin{pmatrix} -1 & 0 & 4 \\ 2 & 1 & 5 \end{pmatrix}$.

Відповіді:

10. $\begin{pmatrix} 2 & -2 \\ -4 & -8 \\ -6 & 4 \end{pmatrix}$.

11. $\begin{pmatrix} 2 & -4 & -3 & 3 \\ 1 & -3 & -1 & 2 \\ -2 & -1 & 2 & 4 \end{pmatrix}$.

12. $\begin{pmatrix} 6 & 5 & -1 \\ 1 & 0 & 5 \end{pmatrix}$.

13. а) $\begin{pmatrix} -37 & -59 \end{pmatrix}$; б) $\begin{pmatrix} -35 \\ 41 \end{pmatrix}$.

14. $\begin{pmatrix} 135 & 65 & 36 & 117 \\ -36 & 13 & 18 & -9 \end{pmatrix}$.

15. $\begin{pmatrix} -6 & 27 \\ -64 & -45 \\ -66 & -36 \end{pmatrix}$.

16. $\begin{pmatrix} -68 & -32 \\ -50 & -40 \\ 104 & 51 \end{pmatrix}$.

17. $\begin{pmatrix} 12 & 12 & -48 \\ -52 & -29 & -26 \\ -48 & -33 & -42 \\ 88 & 56 & 64 \end{pmatrix}$.

18. а) $\begin{pmatrix} 2 & 5 \\ 1 & 4 \end{pmatrix}$; б) $\begin{pmatrix} -1 & 2 \\ 0 & 1 \\ 4 & 5 \end{pmatrix}$.

2. Визначник матриці

Визначник є числовим характеристикою квадратної матриці. Визначником матриці $A$ розміру $2 \times 2$ або визначником другого
порядку називається число, яке обчислюється за формулою
\[ |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}. \] (1)

Визначником матриці \( A \) розміру \( 3 \times 3 \) або визначником третього порядку називається число, яке обчислюється за формулою
\[ |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}. \] (2)

Формулу (2) називають розкладом визначника за елементами першого рядка. Слід запам’ятати лише принцип побудови правої частини формули (2): елемент \( a_{11} \) множимо на визначник другого порядку, який дістаємо з визначника \( |A| \) викреслюванням у ньому 1-го рядка і 1-го стовпця; другий доданок беремо зі знаком “мінус” і множимо елемент \( a_{12} \) на визначник другого порядку, який дістаємо з визначника \( |A| \) викреслюванням у ньому 1-го рядка і 2-го стовпця; третій доданок беремо зі знаком “плюс” і множимо елемент \( a_{13} \) на визначник другого порядку, який дістаємо з визначника \( |A| \) викреслюванням у ньому 1-го рядка і 3-го стовпця.

Алгебраїчним доповненням елемента \( a_{ij} \) матриці \( A \) називається число, яке дорівнює добутку \((-1)^{i+j}\) на визначник матриці, яка утворюється в результаті викреслювання у матриці \( A \) рядка з номером \( i \) та стовпця з номером \( j \). Позначимо алгебраїчне доповнення елемента \( a_{ij} \) через \( A_{ij} \). Для матриці \( A \) розміру \( 3 \times 3 \) маємо:
\[ A_{11} = (-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}, \quad A_{12} = (-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = -a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}, \]
\[ A_{13} = (-1)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}. \]

Отже, формулу (2) можна записати у вигляді
\[ |A| = a_{11} \cdot A_{11} + a_{12} \cdot A_{12} + a_{13} \cdot A_{13}. \] (2′)

Визначник четвертого порядку обчислюється за аналогічною до (2′) формулою
\[ |A| = a_{11} \cdot A_{11} + a_{12} \cdot A_{12} + a_{13} \cdot A_{13} + a_{14} \cdot A_{14}, \] (3)
де \( A_{ij} \) – відповідні алгебраїчні доповнення елементів \( a_{ij} \) першого
рядка матриці, тобто визначники третього порядку, помножені на \((-1)^{i+j}\).

Для обчислення визначників, порядок яких вищий за третій, доцільно використовувати деякі з їх властивостей.

1°. Визначник не зміниться, якщо до одного рядка (стовпця) додати інший, помножений на довільне число.

2°. Якщо у визначнику поміняти місцями два рядки (стовпці), то визначник змінить знак на протилежний.

3°. Визначник матриці не змінюється при її транспонуванні, тобто 
\[ |A^T| = |A| . \]

Обчислити визначники:

19. \[
\begin{vmatrix}
1 & -1 \\
2 & 3
\end{vmatrix}.
\]

За формулою (1) маємо 
\[
\begin{vmatrix}
1 & -1 \\
2 & 3
\end{vmatrix} = 1 \cdot 3 - (-1) \cdot 2 = 5 .
\]

20. \[
\begin{vmatrix}
1 & -1 & 0 \\
3 & 2 & -2 \\
-2 & 3 & 0
\end{vmatrix}.
\]

Застосовуючи послідовно формули (2) та (1), знаходимо
\[
\begin{vmatrix}
1 & -1 & 0 \\
3 & 2 & -2 \\
-2 & 3 & 0
\end{vmatrix} = 1 \cdot \begin{vmatrix}
2 & -2 \\
3 & 0
\end{vmatrix} - (-1) \cdot \begin{vmatrix}
3 & -2 \\
-2 & 0
\end{vmatrix} + 0 \cdot \begin{vmatrix}
3 & 2 \\
-2 & 3
\end{vmatrix} =
\]
\[
= 1 \cdot (2 \cdot 0 - (-2) \cdot 3) - (-1) \cdot (3 \cdot 0 - (-2) \cdot (-2)) = 6 - 4 = 2 .
\]

21. \[
\begin{vmatrix}
1 & -10 & -1 \\
3 & 2 & 6
\end{vmatrix}.
\]

Застосовуючи послідовно формули (2) та (1), знаходимо
\[
\begin{vmatrix}
1 & -10 & -1 \\
3 & 2 & 6
\end{vmatrix} = (-1) \cdot \begin{vmatrix}
-10 & -1 \\
2 & 6
\end{vmatrix} - 2 \cdot \begin{vmatrix}
1 & -10 \\
3 & 6
\end{vmatrix} + (-5) \cdot \begin{vmatrix}
1 & -10 \\
3 & 2
\end{vmatrix} =
\]
\[
= (-1) \cdot ((-10) \cdot 6 - (-1) \cdot 2) - 2 \cdot (1 \cdot 6 - 3 \cdot (-1)) + (-5) \cdot (1 \cdot 2 - 3 \cdot (-10)) =
\]
\[
\]
22. $|A| = \begin{vmatrix} 1 & 0 & 0 & 2 \\ -1 & 1 & 2 & 3 \\ 0 & 2 & 4 & 0 \\ -2 & 2 & 1 & 1 \end{vmatrix}$.

За формулою (3) маємо

$|A| = 1 \cdot A_{11} + 0 \cdot A_{12} + 0 \cdot A_{13} + 2 \cdot A_{14} =
\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \\ 2 & 1 & 1 \end{vmatrix} =
\begin{vmatrix} -1 & 1 & 2 \\ 0 & 2 & 4 \\ -2 & 2 & 1 \end{vmatrix} + 2 \cdot (-1) \cdot
\begin{vmatrix} -1 & 1 & 2 \\ 0 & 2 & 4 \\ -2 & 2 & 1 \end{vmatrix} =
\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \\ 2 & 1 & 1 \end{vmatrix} - 2 \cdot
\begin{vmatrix} -1 & 1 & 2 \\ 0 & 2 & 4 \\ -2 & 2 & 1 \end{vmatrix} = -18 - 2 \cdot 6 = -30.$

23. $|A| = \begin{vmatrix} -2 & 3 & 4 & 5 \\ 1 & -1 & -3 & -2 \\ 3 & 5 & 1 & 4 \\ 2 & -2 & 5 & -6 \end{vmatrix}$.

Скористаємось властивістю 1° і утворимо, наприклад, у першому стовпці нуль. Для цього виконаємо послідовно такі дії:

1) до першого рядка додамо другий, помножений на 2; 2) до третього рядка додамо другий, помножений на $(−3)$; 3) до четвертого рядка додамо другий, помножений на $(−2)$. Запишемо в умовних позначеннях вказані дії, а також їх результат (опускаємо запис відповідних обчислень):
Застосуємо далі властивість 3º і послідовно формули (3) та (2):

\[
|A| = \begin{vmatrix}
0 & 1 & 0 & 0 \\
1 & -1 & 8 & 0 \\
-2 & -3 & 10 & 11 \\
1 & -2 & 10 & -2 \\
\end{vmatrix} = 0 + 1 \cdot (-1) \cdot \begin{vmatrix}
1 & 8 & 0 \\
-2 & 10 & 11 \\
1 & 10 & -2 \\
\end{vmatrix} = 0 + 1 \cdot (-10 - 110) - 8(4 - 11) = -130 + 56 = 74.
\]

Вправи для самостійного розв'язання

24. Обчислити визначник другого порядку

\[
\begin{vmatrix}
\frac{1}{3} & 2 \\
1.5 & 6 \\
\end{vmatrix}.
\]

25. Обчислити визначники третього порядку:

\[
\begin{vmatrix}
-10 & 7 & 8 \\
-6 & 1 & 6 \\
-2 & 0 & 7 \\
\end{vmatrix}.
\]

26. Обчислити визначники четвертого порядку:

\[
\begin{vmatrix}
2 & -11 & 4 \\
5 & 8 & -4 \\
-3 & -4 & 0 \\
\end{vmatrix}.
\]

27. Обчислити визначники четвертого порядку:

\[
\begin{vmatrix}
2 & -1 & 0 & -2 \\
0 & 3 & 2 & 0 \\
1 & 4 & 1 & 2 \\
0 & 5 & 2 & 1 \\
\end{vmatrix}.
\]
Вказівка. Додати до другого рядка третій, помножений на \((-2)\), а потім скористатись властивістю 2º.

Відповіді:
24. \(-1\) . 25. 156. 26. \(-148\) .
27. 345. 28. 12. 29. 266.

3. Обернена матриця

Нехай \( A \) – квадратна матриця і \(|A| \neq 0\). Обернена матриця до матриці \( A \) обчислюється за формулою
\[
A^{-1} = \frac{1}{|A|} \tilde{A}^T ,
\]
(4)
de \( \tilde{A} \) – матриця, складена з алгебраїчних доповнень елементів матриці \( A \). Матрицю \( \tilde{A} \) називають приєднаною до \( A \).

Для матриці \( A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \)
формула (4) набуває вигляду
\[
A^{-1} = \frac{1}{|A|} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} .
\]
(5)

Для матриці \( A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \)
приєднана матриця має вигляд
\[
\tilde{A} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} .
\]
(6)

Обернена матриця \( A^{-1} \) задовольняє співвідношення
\[
A^{-1}A = AA^{-1} = E ,
\]
de \( E \) – одинична матриця. Для перевірки правильності знаходження оберненої матриці достатньо переконатися, наприклад, що \( A^{-1}A = E \).
30. Знайти обернену матрицю до матриці \( A = \begin{pmatrix} 2 & -2 \\ 4 & 3 \end{pmatrix} \).

Визначник матриці \( |A| = \begin{vmatrix} 2 & -2 \\ 4 & 3 \end{vmatrix} = 14 \neq 0 \). Тому існує обернена матриця до \( A \). За умовою задачі \( a_{11} = 2 \), \( a_{12} = -2 \), \( a_{21} = 4 \), \( a_{22} = 3 \). Тоді за формулою (5)

\[
A^{-1} = \frac{1}{14} \begin{pmatrix} 3 & 2 \\ -4 & 2 \end{pmatrix}.
\]

31. Знайти обернену матрицю та переконатися, що \( A^{-1}A = E \), якщо \( A = \begin{pmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{pmatrix} \).

Обчислимо визначник матриці \( A \):

\[
|A| = \begin{vmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{vmatrix} = 2 \cdot \begin{vmatrix} 3 & 4 \\ -2 & -3 \end{vmatrix} - 5 \cdot \begin{vmatrix} 6 & 4 \\ 5 & -3 \end{vmatrix} + 7 \cdot \begin{vmatrix} 6 & 3 \\ 5 & -2 \end{vmatrix} = 2 \cdot (3 \cdot (-3) - 4 \cdot (-2)) - 5 \cdot (6 \cdot (-3) - 4 \cdot 5) + 7 \cdot (6 \cdot (-2) - 3 \cdot 5) = 2 \cdot (-1) - 5 \cdot (-38) + 7 \cdot (-27) = -1.
\]

Визначник не дорівнює нулью, тобто обернена матриця існує.

Знайдемо приєднану матрицю \( \bar{A} \). Для цього обчислимо алгебраїчні доповнення елементів матриці \( A \). Нагадаємо, що алгебраїчне доповнення \( A_{ij} \) елемента \( a_{ij} \) – це число, яке дорівнює добутку \((-1)^{i+j}\) на визначник матриці, що утворилася, коли у матриці \( A \) викреслили рядок з номером \( i \) та стовпець з номером \( j \). Отже, якщо сума \( i + j \) парна, то знак відповідного визначника не зміниться. Якщо ж сума \( i + j \) непарна, то перед визначником слід поставити знак мінус.

\[
A_{11} = \begin{vmatrix} 3 & 4 \\ -2 & -3 \end{vmatrix} = -1, \ A_{12} = -\begin{vmatrix} 6 & 4 \\ 5 & -3 \end{vmatrix} = 38, \ A_{13} = \begin{vmatrix} 6 & 3 \\ 5 & -2 \end{vmatrix} = -27, \\
A_{21} = -\begin{vmatrix} 5 & 7 \\ -2 & -3 \end{vmatrix} = 1, \ A_{22} = \begin{vmatrix} 2 & 7 \\ 5 & -3 \end{vmatrix} = -41, \ A_{23} = -\begin{vmatrix} 2 & 5 \\ 5 & -2 \end{vmatrix} = 29,
\]

14
Запишемо приєднану матрицю згідно з формулою (6):

\[
\hat{A} = \begin{pmatrix}
-1 & 38 & -27 \\
1 & -41 & 29 \\
-1 & 34 & -24
\end{pmatrix}.
\]

За формулою (4) знаходимо обернену матрицю:

\[
A^{-1} = \frac{1}{|A|} \hat{A}^T = \frac{1}{-1} \begin{pmatrix}
-1 & 1 & -1 \\
38 & -41 & 34 \\
-27 & 29 & -24
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 1 \\
-38 & 41 & -34 \\
27 & -29 & 24
\end{pmatrix}.
\]

Покажемо, що \( A^{-1} \cdot A = E \):

\[
A^{-1} \cdot A = \begin{pmatrix}
1 & -1 & 1 \\
-38 & 41 & -34 \\
27 & -29 & 24
\end{pmatrix} \begin{pmatrix}
2 & 5 & 7 \\
6 & 3 & 4 \\
5 & -2 & -3
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & (-1) \cdot 6 + 1 \cdot 5 \\
(-38) \cdot 2 + 6 \cdot 41 + (-34) \cdot 5 \\
27 \cdot 2 + 6 \cdot (-29) + 24 \cdot 5
\end{pmatrix} \begin{pmatrix}
1 \cdot 5 + (-1) \cdot 3 + 1 \cdot (-2) \\
(-38) \cdot 5 + 3 \cdot 41 + (-2) \cdot (-34) \\
27 \cdot 5 + 3 \cdot (-29) + 24 \cdot (-2)
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

32. Знайти обернену матрицю до матриці \[ A = \begin{pmatrix}
6 & 7 & 5 \\
10 & 10 & 3 \\
9 & 6 & 5
\end{pmatrix} \].

Визначник матриці \(|A| = -119\). Знайдемо алгебраїчні доповнення елементів матриці \( A \):

\[
A_{11} = \begin{vmatrix}
10 & 3 \\
6 & 5
\end{vmatrix} = 32, \quad A_{12} = -\begin{vmatrix}
10 & 3 \\
9 & 5
\end{vmatrix} = -23, \quad A_{13} = \begin{vmatrix}
10 & 10 \\
9 & 6
\end{vmatrix} = -30,
\]

\[
A_{21} = -\begin{vmatrix}
7 & 5 \\
6 & 5
\end{vmatrix} = -5, \quad A_{22} = \begin{vmatrix}
6 & 5 \\
9 & 5
\end{vmatrix} = -15, \quad A_{23} = -\begin{vmatrix}
6 & 7 \\
9 & 6
\end{vmatrix} = 27,
\]

\[
A_{31} = \begin{vmatrix}
7 & 5 \\
10 & 3
\end{vmatrix} = -29, \quad A_{32} = -\begin{vmatrix}
6 & 5 \\
10 & 3
\end{vmatrix} = 32, \quad A_{33} = \begin{vmatrix}
6 & 7 \\
10 & 10
\end{vmatrix} = -10.
\]
Запишемо приєднану матрицю згідно з (6):

$$\tilde{A} = \begin{pmatrix} 32 & -23 & -30 \\ -5 & -15 & 27 \\ -29 & 32 & -10 \end{pmatrix}.$$ 

За формулою (4) знаходимо обернену матрицю

$$A^{-1} = -\frac{1}{119} \begin{pmatrix} 32 & -5 & -29 \\ -23 & -15 & 32 \\ -30 & 27 & -10 \end{pmatrix}.$$ 

Вправи для самостійного розв’язання

Знайти обернені матриці до заданих:

33. $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

34. $A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$.

35. $A = \begin{pmatrix} -1 & -2 & -5 \\ 1 & -10 & -1 \\ 3 & 2 & 6 \end{pmatrix}$.

36. $A = \begin{pmatrix} -10 & 7 & 8 \\ -6 & 1 & 6 \\ -2 & 0 & 7 \end{pmatrix}$.

37. $A = \begin{pmatrix} 2 & -11 & 4 \\ 5 & 8 & -4 \\ -3 & -4 & 0 \end{pmatrix}$.

Відповіді:

33. $A^{-1} = \begin{pmatrix} -2 & 1 \\ 1,5 & -0,5 \end{pmatrix}$.

34. $A^{-1} = \begin{pmatrix} -1 & 1 \\ -2 & 1 \end{pmatrix}$.

35. $A^{-1} = \begin{pmatrix} -58 & 2 & -48 \\ -9 & 9 & -6 \\ 32 & -4 & 12 \end{pmatrix}$.

36. $A^{-1} = \begin{pmatrix} 1 & 1 \\ -2 & 1 \\ 7 & -49 & 34 \\ 30 & -54 & 12 \\ 2 & -14 & 32 \end{pmatrix}$.

37. $A^{-1} = \begin{pmatrix} -16 & -16 & 12 \\ 12 & 12 & 28 \\ 4 & 41 & 71 \end{pmatrix}$. 

16