Лабораторна робота №7

ТИРИСТОРИ

Мета роботи: вивчення основних фізичних закономірностей, що визначають принцип роботи і основні параметри тиристорів на підставі аналізу вольт амперних характеристик (BAX) динистора і тринистора.

1.Завдання на лабораторну роботу

1.Отримати ВАХ діодного тиристора (пряму і зворотну вітки) згідно варіанта (таблиця 7.1).

2.Визначити експериментально параметри триодного тиристора.

Номер варіанта завдання	Тип діода	Номер варіанта завдання	Тип діода	Номер варіанта завдання	Тип діода	Номер варіанта завдання	Тип діода
1	2N682	11	2N6170	21	2N6342	31	2N6396
2	2N685	12	2N6171	22	2N6343	32	2N6397
3	2N688	13	2N6172	23	2N6344	33	2N6398
4	2N690	14	2N6173	24	2N6345	34	2N6399
5	2N692	15	2N6174	25	2N6346	35	2N6400
6	2N1595	16	2N6237	26	2N6347	36	2N6401
7	2N1596	17	2N6238	27	2N6348	37	2N6402
8	2N1597	18	2N6239	28	2N6349	38	2N6403
9	2N1599	19	2N6240	29	2N6394	39	2N6404
10	2N683	20	2N6241	30	2N6395	40	2N6405

Таблиця 7.1 – Варіанти завдань

2.Порядок виконання лабораторної роботи

1. Викликати програму «MICROCAP12».

2. Побудувати схему для дослідження діодного тиристора (рис. 7.1.), де VI – джерело анодної напруги, VS - тиристор CS20-22; RI – змінний опір з максимальним значенням, рівним 1 кОм; R3 – опір, що стоїть в колі анода, що дорівнює 10 Ом.

Рис. 7.1 – Схема для дослідження діодного тиристора

3. Зняти пряму вітку вольт-амперної характеристики діодного тиристора $I_{np} = f (U_{np})$, змінюючи вхідну анодну напругу шляхом зміни опору RI від нуля до максимального значення опору (1 кОм):

- встановити пряму напругу джерела напруги V1 30 В (значення напруги на V1 встановлюється подвійним клацанням по елементу);
- змінювати опір змінного резистора R1 відповідно з заданими в таблиці 7.1 значеннями (значення опору встановлюється в процентному відношенні до максимальної величині, тобто 100% - це 1 кОм);
- перевести значення опорів для R1 з % в реальні значення, вимірювані в Ом; результати розрахунку занести в таблицю 7.1;
- виміряти значення прямого струму I пр і прямого напруги U пр, скориставшись кнопками меню «Analysis» (Аналіз), «Transient Analysis» (Аналіз перехідних процесів), «Run»(Запустити), де напруга живлення від джерела VI показано червоним кольором, струм I пр для діодного тиристора VS показаний синім кольором, а пряма напруга U пр зеленим кольором. Результати занести в таблицю 7.2.

					1.	чоринцун	/ • _				
R1, %	0	20	30	35	40	50	60	70	80	90	100
R1, Ом	0										1000
<i>U</i> _{пр} , В											
<i>I</i> _{пр} , мА											
<i>U</i> _{обр} , В											
I _{обр} , мА											

Таблиця 7.2

4. Зняти зворотну вітку вольт-амперної характеристики діодного тиристора $I_{obp} = f(U_{obp})$, змінюючи *R1* від нуля до максимального значення, через 200 Ом відповідно до методики п. 3. Результати занести в таблицю 7.1.

5. Побудувати схему для дослідження триодного тиристора (рис. 7.2), де V1 – джерело анодної напруги, VS – тиристор CS20-22; R1 – змінний опір з максимальним значенням, рівним 1 кОм; R3 – опір, що стоїть в колі анода, що дорівнює 10 Ом; V2 – джерело керуючої напруги (9 В); R2 – змінний опір, з допомогою якого подається струм на керуючий електрод тиристора.

6. Визначити експериментально параметри триодного тиристора в момент його включення при подачі струму управління *I* _у на керуючий електрод тиристора:

- подавати струм управління І_у на керуючий електрод тиристора (5 мА, 10 мА, 15 мА) за допомогою потенціометра *R2*;
- змінювати значення змінного опору *R1* від нуля до моменту включення тиристора (момент включення визначається різким зменшенням значення анодної напруги);

Рис. 7.2 – Схема для дослідження триодного тиристора

- визначити в момент відмикання тиристора, скориставшись кнопками меню «Analysis» (Аналіз), «Transient Analysis» (Аналіз перехідних процесів), «Run» (Запустити), напруга включення $U_{\rm вкл}$, анодна напруга на відкритому тиристорі $U_{\rm a \, від}$, струм відкритого тиристора $I_{\rm a}$, напруга управління $U_{\rm y}$. $U_{\rm вкл}$ показано на графіку зеленим кольором до моменту переходу тиристора у відкритий стан, $U_{\rm a \, від}$ – зеленим кольором, коли тиристор вже перейшов у відкритий стан, $I_{\rm a}$ – рожевим кольором, $U_{\rm y}$ – жовтим кольором. Крім того, на графіках показані значення струму управління $I_{\rm y}$. – чорним кольором, напруга джерела V1 – синім кольором, напруга джерела V2 - червоним кольором;
- отримані дані занести в таблицю 7.3.

I _y	R1	Ia	U _{а від}	U _y	<i>U</i> _{вкл}
5 мА					
(59%)					
10 мА					
(29%)					
15 мА					
(19%)					

Таблица	73	
гаолица	1.5	

3.За результатами вимірювань:

а) побудувати на одному графіку сімейство прямих і зворотних віток вольт-амперної характеристики $I_a = f(U_a)$ при $I_y = 0$. Масштаб для прямої і зворотної віток може бути різним;

б) визначити при $I_y = 0$ основні параметри тиристора для $U_a=25$ В, $U_{\rm вкл}$, $I_{\rm вкл}$, $Z_{\rm d}$, $I_{\rm y}$, $I_{\rm ofp}$ max, $U_{\rm a}$ від

Знайдені значення занести в таблицю 7.4.

Таблиця 7.4									
I _у , мА	I _{обр тах} , мА	U _{вкл} , В	I _{вкл} , мА	I _{утр} , мА	Z _д , Ом	Z _{обр} , Ом			

Зміст звіту

1. Призначення і мета роботи.

2. Схеми випробувань.

3. Таблиці експериментальних і розрахункових даних.

4. Результати обробки даних експериментів згідно п. 6, вольт-амперні характеристики тиристора, характеристики включення і прямої передачі струму.

5. Висновки по роботі.