JIEKLLIA 14
NMpMHUMNIN CTBOPEHHA HEUPOHHMUX
Mmepex npm poborti 3 Tensorflow

Heo0x11H0 BUOpaTu cepeaoBuIle po3poOKH. PEKOMEHAYEThCS
BUKOPHUCTOBYBATH I HECKIATHUX MEPEK
nttps://colab.research.google.com. Ile 6e3Kk0OIMITOBHE CEPEAOBHUIIE
po3poOku Hanmmcade Google cnemiaabHO A1 pillieHb B rairy3i

MaIlIMHHOI'0 HaBYaHHS Ta HEUPOHHUX MEPEK.
CHOBHI Kpokm:

1. IlepenoOpoOKa JaHMX.

2. IloOynoBa Mmoneni.

3. Kommuasainsa Mojen.
4. BuBueHHS MOJIEII.
5. OmHeKa MoJenl.

NonepeaHsa o6pobka paHux:

Pe3ynbrar poOOTH HEHpOMEPEkK1 HAMOJOBUHY 3aJICKUTh Bl TOrO, HACKIJIBKH J00pe
MIATOTOBaH1 JaH1 Jjisg Monaenl. [IponyiieHi gaHi abo HempaBHIbHA PO3MIPHICTh MOXKE
3B€CTH HAHIBEIb BC1 3yCUJLIsA. TOMYy BaXXJIMBO MPUIALINTH [IbOMY €TaIly 4ac 1 yBary.
Hacnpapai mist oOpoOKH JaHMX MOXKHAa BUKOPUCTOBYBATH Te, 110 3py4Himie. MokHa
nucatd cBoi ¢yHkmii Ha Python abo BukopumcToByBaTH 010J10TEKY
sklearn.preprocessing.

Y camomy tensorflow Takoxx € 3acobm gma mepenoOpoOKHM B MOy
tf.keras.preprocessing. 3okpema BenuKuii BHOIp 1HCTPYMEHTIB Jisi 300pakeHb Ta

Ha wo 3BepHyTM yBary Hacamnepen:

«IIpoBajin» B 1aHUX.

CuTyaliiro MOKHa BUIIPABUTH K1JIbKOMa criocodaMu. SIKIo Takux 3amuciB Hebararo, i
HUMHM MOKHA 3HEXTYBATH, TO 1X MOKHA BUJAIUTH. TakoX 1X MOXKHA 3aMIHUTH: 1€
MOXe OyTH cepeHe ado HaluacTile BUKOPUCTOBYETHCS JJIs 1aHO1 (p1di.
Hopmauizauisa 1aHux.

[IpuBene 3Ha4eHHs 10 meBHOIO Alanazony. Hanpukian [-1; 1] abo z-macimraOyBaHHS
(y sklearn me StandardScaler).

O0poOKka KareropiajJibHUX JaHUX.

Ak mpaBui0, 11€ CTBOPEHHS MiJ KOXKHY KaTeropito cBoe€i ¢ivi. MoxkHa

BukopucroByBaru OneHotEncoder 31 sklearn abo get_dummies B pandas.
Takox HEOOX14HO PO30OUTH JaH1 Ha 3 BUOIPKHU:

- HaBYaJIbHa,

- BaJIJALIAHY,

- TECTORY.

HapuanpHuii HaO1p JaHUX - 1€ T€, HA YOMY 0€3I10CepEeaHbO HABYAETHCS
Mojelb. Banimaliis motpioHa a1 mepeBipKy Ballloi Mozesl. Y Mpoleci HaBYaHHS
Mepeka MOXKE Jy»Ke MIJIaIITyBaTUCA 111 1aH1, HA SIKUX HaBYA€ThCs. B pe3ynbrari
TaKa MOJAEJb HE 3MOKE MPallOBaTH 3 JaHUMH, BIIMIHHUMH B1Jl HABY4aJIbHOIO
HaOopy. Lle Ha3uBaeThCs nepeHaBuyaHHAM. [1[00 YHUKHYTH 1IbOTO MOTP10OCH
BaJIAAIIMHAN HA01p, HA IKOMY KOHTPOJIOETHCS, IK MOJIENb Tiependadae. TectoBun
HaO1p BUKOPHUCTOBYETHCS JIMIIIE OJUH Pa3, KOJIM Meperka IMOBHICTIO HaBYEHA IS
(b1HAIBHOT OLIHKHU. I1iCIIs bOTO Mepeka HE T0YUY€ETHCS 1 3MIHIOEThCS. 3a3BUYail
Ha Bajigamiiiauii Hao1p Buginsgerbes 20-30% manux Ta Ha TecToBui 5-10%.

No6ynoBsa mopeni
HarnpocrTiie cTBOpUTH MOJIEIb 32 JOIIOMOI0I0 Kiacy Sequential, mo

npuiiMae cnucok mapis. 11100 moguBUTHCS BMICT MOJEIL, OTPIOHO
BUKJIMKaTH MeTOJ, summary (). BaJImBo BU3HAYUTH PO3MIP BXIJTHUX
nanux. Ile MoxxHa 3po0OuTH 3a 1onoMoror arpudyra input shapey
IepIIOMY Iapi.

import tensorflow as tf

model = tf.keras.models.Sequential ([
tf.keras.layers.Dense (32, activation='relu',

input shape=(10,), name='hidden layer 1'),
tf.keras.layers.Dropout (0.2, name='dropout'),
tf.keras.layers.Dense (10, name='hidden layer 2'")

1)

model . summary ()

BusBin:

Model: "sequential 3"

Layer (type) Output Shape Param #
hidden lager 1 (Demse) (Nome, 320 352
dropout (Dropout) (None, 32) 0

hidden layer 2 (Dense) (None, 10) 330

Total params: 682
Trainable params: 682
Non-trainable params: O

[ITapn MoxHa AOJABATH 1 IIOCIIIOBHO, BUKOpHCcTOBYIoun MeTox add().
Hanpuknaa, 1ogaMo napy A0JaTKOBHX IIapiB 1 BUKIMYEMO summary ().

model .add (tf.keras.layers.Dense (5, activation='relu',
name='hidden layer 3'))

model.add (tf.keras.layers.Dense (2, name='output'))
model . summary ()

Busin:

Model: "sequential 3"

Layer (type) Output Shape Param #
hidden layer 1 (Dense) (Nome, 32) 352
dropout (Dropout) (None, 32) 0

hidden layer 2 (Dense) (None, 10) 330

hidden layer 3 (Dense) (None, 5) 55

output (Dense) (None, 2) 12

Total params: 749
Trainable params: 749
Non-trainable params: O

3ayBaxkTe, 0 MOJIEJ1 A0JaIocs 1e ABa Iapu. BHU3Y BKa3y€eTbCsl KUIbKICTh MapaMeTpiB, K1 HEOOX1THO
HaBUYUTH. BiAMOBIAHO, YUM O1IbIIIE MTApaMeTPiB, TUM JOBIIIC HABYATUMETHCS Ballla MEPexka.

Sequential 3pyunuii SKIIO y Bac HEBEJIMKA MepeXka 3 MOCIIIOBHOK CTPYKTYpOIO, JIe IIapy WAYTh OJUH
3a OJTHAM, € TIJIbKW OJWH BX1J] Ta OIMH BUX1J1. AJie MOXXYTh OyTH CKJIaIHIII1 BapiaHTH MOJICIICH.
Jlist mporo B tensorflow e dynkmionansauit API. I[lepenmmemMo MoIelb BHIIIE.

input = tf.keras.Input (shape=(10,), name='input')

layer 1 = tf.keras.layers.Dense (32, activation='relu',
name='hidden layer 1') (input)

dropout = tf.keras.layers.Dropout (0.2, name='dropout') (layer 1)
layer 2 = tf.keras.layers.Dense (10, name='hidden layer 2') (dropout)
laygr 3 = tf.keras.layers.Dense (5, activation='relu',
ngme='hidden layer 3') (layer 2)

utput = tf.keras.layers.Dense (2, name='output') (layer 3)

model 2 = tf.keras.Model (
inputs=input,
outputs=output,

model 2.summary ()

Busina:
Model: "model 2"

Layer (type) Output Shape Param #
input (Inputfayer) [(ene, 101 0
hidden layer 1 (Dense) (None, 32) 352
digpbut (Dropout) (None, 32) 0

idden layer 2 (Dense) (None, 10) 330
hidden layer 3 (Dense) (None, 5) 55
output (Dense) (None, 2) 12

Total params: 749
Trainable params: 749
Non-trainable params: O

Temep ko:keH map € QyHKIi€0, KA MPUUMAE HA BXiJ pe3yJbTaT po00TH MONEPEAHBOI0 HIAPY.
CTpyKTypy TaKoi MogeJi MOKHA BUBECTH HA0YHO 3 YCiMa 3aJIe;KHOCTAMH 1IAPIB OUH BiJl 0OTHOTO

(Puc.1).

tf.keras.utils.plot model (model 2,

ez | L o, 1073

ez ol sger

cutpuac: | [(MNone, 10}]

B!

iclelen_Lieger_ 1z Pierneas

inpuc: | (Neone, 109
oz | [Boaane, B2

l

dgropout: Dropour

inpu: | [Rone, 12

otz | [Mene, 12

l

Ficlelen_Legrer 2 ierneas

inpt: | [P, 32

ourput: | (Mone, 100

l

Ficlelen_Lipgrer_ b i

inpuc: | (None, 109
oz | Mone, 53

l

mpnl: | Mone, 53

cwtpuar: Denze

ol pulz | Mo, 2

show shapes=True)

Puc.1 Ctpykrypa 3aJ1€)KHOCTI IIapiB.

10

3a gomomorow (QynkmioHaabHOoro APl MoOXHa CTBOpUTH CTPYKTYpy 3 KUIbKOMa BXOJaMHM Ta BUXOJaMHU

(Puc.2).

HasHauuMMO OBa OKpPEeMMX BXOOU
input 1 = tf.keras.Input (shape=(10,), name='input 1')
input 2 = tf.keras.Input (shape=(20,), name='input 2')

BM3HAUMMO CTPYKTYPY IOJI9 OOPOOKM IMEPpIOTO BXOIY
layer 1 = tf.keras.layers.Dense (32, name='layer 1') (input 1)

Ina mpyroro Bxonoy
layer 2 = tf.keras.layers.Dense (32, name='layer 2') (input 2)
layer 3 = tf.keras.layers.Dense(l6, name='layer 3') (layer 2)

06’ enHaemo
oncatenate = tf.keras.layers.concatenate([layer 1, layer 3])

BuUsHAUMMO IOBa BUXOIU
output 1 = tf.keras.layers.Dense(l, name='output 1') (concatenate)
output 2 = tf.keras.layers.Dense(l, name='output 2') (concatenate)

model 3 = tf.keras.Model (

inputs=[input 1, input 2],
outputs=[output 1, output 2],

tf.keras.utils.plot model (model 3, show shapes=True)

11

gz | [EM e, 200
el & g | sy rer
output: | [[None, 20}]
t. MNone, 20 ' t. Nomne, 10
layer 2: Dense e e il) input_1: InputLayer e I _DFE)
cutput: | (Mone, 32) output: | [[Wone, 107]
|
input: | (None, 32) input: | (None, 10)
lasvver 3 Diense _ layer 1: Dense —
ol | (Nane, 16) gz | {(Nane, 32)
et
mpul: | [(None, 3220, (Mone, 1h)]
concalenale T Doncaleman e
- cutput: [MNone, 10}
f""‘! \\
o "y
imput: | (None, 15 mput: | [Nomne, 118)
cutpur_1: Dense cutpur_2: Dense
opnmput: | (Nane, 1) outpur: | (Nane, 1}

Puc.2 CrpykTypa 3 KIJIbKOMa BXOJIaMU Ta BUXOAaMH.

12

Komninsuis mogeni

[Ticast Toro, sIKk CTpyKTypa MOAEI1 T'OTOBA, il IIOTPIOHO CKOMMUIKOBATH. J[Jis
LIOTO MOJENb Ma€e MeTo] compile (). I onoBHE, 1110 MOKHA BU3HAYUTH 34
KOMITUIAIIL - € (yHKIIs BTpar. BnacHe, B HeEl 3alIeKUTh PE3yibTar
HaB4YaHHs. Hampukian, cepenHbOKBaJIpaTUYHa ITIOMHUJIKA CUJIBHIIIE «Kapaey
MOJICJIb 3a BHKHAW, HDK cepeaHs aOcomtoTHa nomuika. Illo came
BUKOPHCTOBYBaTH 3aJICKUTh BlJ 3aBAaHHA. SKIO BaM IOTPIOHO

epe0aunTH 1IHY KHUTJA, TO IIBHIIE 32 BCE BUKUANA MOTaHO BIUIMHYTH Ha
pe3ynbTar. I TyT Oulbllle miaikae cepeaHsi a0COMI0THA MOMUIKA. K0 BU
IIPOPOKYETE PyX II1H HA (P)OHAOBOMY PHHKY, TO 3aHAJATO BEIMKE BIIXHICHHS
B1J LIIHM OyJie Ha IIKOAY, 1 TYT Kpallle CEpeIHbOKBAIpaTUYHA ITOMUJIKA.
Il]e ooun easicnueun napamemp — ue anzopumm onmumizauii. /[oope
RIOIOPAHUI ORMUMIZAMOP 00360JUMDb 6AM WIEUOULE HABYUMU MOOE/Ib A
HO MOMCIUBOCH YHUKHYMU JIOKATbHUX MIHIMYMIG.

13

model = tf.keras.models.Sequential ([
tf.keras.layers.Dense (5, 1nput shape=(10,),

name='hidden layer 1'),
tf.keras.layers.Dense (2, name='output')

1)

model.compile (

loss=tf.keras.losses.SparseCategoricalCrossentropy (from 1
ogits=True), # OYyHKLU1S BTpaT
optimizer="'Adam', # OnTumMizaTop
metrics=[# MeTpuxu
'accuracy', # fAxumo y ob’exTa npmlHauveHo iM’ g, TO
MOXHa BUKIMKATU OO’ €KT 3 BUKOPMCTAHHSM 1MEHI1
tf.keras.metrics.Precision ()

14

HasuaHHa mopeni

[Ticns Toro, Ik MOJieJIb CKOMITLILOBAHA, 1i MOTPIOHO HABUMTH. {715 IIbOTO 3aCTOCOBYETHCS METO/L
fit (). Bin npuiimae BXijH1 IaH1 Ta OY1KyBaHi BIAMOBII1 Mepexi. Mo)kHa BKa3aTyh MacuB 3
BaJIlTAllIMHUMU JJAHUMH, MAaKCUMaJIbHY KUIbKICTh €MMi3041B Ta 6araro iHioro. [Tpoctui
UK

import numpy as np

THiuiamnmizsauisa Habopy IOaHMX BUMNAIKOBUMM YMCIIAMMU.
H np.array (np.random.random((100, 5))) # Marpuug 100 Ha 5 3
lanas3oHoM RHaueHb [0;1]
Y = np.array (np.random.random((100))) # BexTop moBxuuHm 100 c
IniarnasoHoM 3HaueHb [0;1]
CTBOPMMO MOIEJIb
model = tf.keras.models.Sequential ([
tf.keras.layers.Dense (3, input shape=(5,)),
tf.keras.layers.Dense (1)

1)

15

Cxowmrijoemo
model.compile (
optimizer='Adam',
loss="mse',
metrics=['mean absolute error']

HaBummMo
model.fit (

X, # Habip BX1IOHUX OaHUX

Y, # Habip BipHMX BiAmoBimen

validation split=0.2, # Lel npuxialg aBTOMATMYUHO BUILJINTH
YaCTMHY HABUYAJIbHOT'O HabOpy Ha BaJllgalllMH1 OaHH1. B OaHOMYy
punagky 20%

epochs=10, # IIpouec HaBUYaHHSA 3aBepmmTbcsa uyuepe3 10 enox

batch size = 8 # Habip maHmux Oyne po3OUTUM Ha NaAKETU
(baTul) o 8 eJjeMeHT1B Habopy B KOXHOMY.

16

Buxina:

Epoch 1/10

IR RIS === —————===—============c===== = (CEN NGV == .
loss: 0.2524 - mean absolute error: 0.4273 - val loss:
0.2713 - val mean absolute error: 0.4401

Epoch 2/10

MOVAQ [s=============================] - (5 Smsy/Stcri=
loss: 0.2353 - mean absolute error: 0.4003 - val loss:
0,2420 - val mean absolute error: 0.4183

poch 3/10

10/10 [==============================] - (s 5Sms/stepi=
loss: 0.2256 - mean absolute error: 0.4017 - val loss:
0.2348 - val mean absolute error: 0.4122

Epoch 4/10

10/10 [==============================] - (s 4ms/step -
loss: 0.2203 - mean absolute error: 0.3968 - val loss:

0.2309 - val mean absolute error: 0.4095

Epoch 5/10

lO/lO [:::::::::::::::::=:=::::::::::]

mean_absolute_error:

0.4045
Epoch 6/10

10/10 [:::::::=============::::::::::]

mean absolute error:

0.4072
Epoch 7/10

Epoch 8/10

O/lO [::::::==================::::::]

mean absolute error:

0.4004
Epoch 9/10

mean absolute error:

0.3971
Epoch 10/10

mean_absolute_error:

0.3935

val loss:

- O0s 4ms/step - loss: 0.2166 -

0.2251 - val mean absolute error:

- Os 3ms/step - loss: 0.2094 -

0.2262 - val mean absolute error:

- Os 3ms/step - loss: 0.2056 -

0.2251 - val mean absolute error:

- 0Os 3ms/step - loss: 0.1999 -

0.2174 - val mean absolute error:

- O0s 3ms/step - loss: 0.1950 -

0.2134 - val mean absolute error:

- 0s 3ms/step - loss: 0.1909 -

0.2093 - val mean absolute error:

18

Y BHUCHOBKY IIOKAa3y€TbCS PE3yJIbTaT BHUKOHAHHS KOXKHOI

eroxu. BUBOIUTHCS HOMEp €IOXH, KUIBKICTh ITAKETIB, BUTpAYCHA Ha
yac 1 nomuiIkd. LOSS — 1me po3paxoBaHa (yHKIS BTparT,
mean_absolute _error — e MeTprKka, BKa3aHa IIpH KOMIIUIAII. SKIIo
BKa3aTu J0JAaTKOBI METPUKH, TO BOHU T€X OyAyTh Yy BUCHOBKY. YCI
IOMHIIKA 3 TpedikcoM «val » - 1me Te came g BaligamiiHOTrOo
HaboOpy JaHUX.
IbOMY BH1 MOJACIb MOKHA HABYMTH, aje Ha0araro €(peKTHUBHIIIEC
[[€ MOXKHa 3pOOMTH, SKIIO BHKOPHUCTOBYBATH (DYHKI[IOHAII
3BOPOTHMX BHXOJIB. 3 IXHBOI JOINOMOIOK MOXKHA 3J1HMCHUTU
paHHIO 3yIWHKY HaBYaHHS JJs OOpOThOM 3 MepEHABYAHHSIM,
B13ya13yBaTH JaHl Ta 0araro 1Hmoro. Oce npukiaa ASSKUX 13 HUX:

19

Hdxmo TnoMMJIKa He BMeHmYyeTbCcd Ha OIpoTg31 BkaszsaHol

K1JIbKOCT1 €I0X, TO TIpOolleC HaBYaHHA I[IepepMBaeTbCad 1

MOIeJIb 1H1111aJIl3YyeThbCHd Bar'aMM 23 HAMHWMXUYMM [IOKA3HUKOM

napamMerpa "monitor"

early stopping = tf.keras.callbacks.EarlyStopping (
monitor='val loss', # BKasyeTbCA IapaMeTp, O SAKOMY

BUKOHYETBCHA PaHHS B3yIOMHKA. 3al3Buuan, Le QyHKI1S BTpPAT

Ha BaJjiljallyHoMy Habopl (val loss)

patience=2, # kxiJgbKiCTh €IOX IO IO SBAaBEPIEHHI SKUX

CK1HUMTBbCH HABUAHHA, SKIO INOKABHMKM HE MNOKpallaTbCH
mode="'min', # Bkasye, B HAKY CTOPOHY IIOBMHH OYyTH
[IOKpalleHa HoxmbKa
restore best weights=True i SIKIIO rnapamMeTp
BMUCTaBJEHO B true, TO IO 3aBEPUEHHI HAaBUYaHHA MOZIEJIb
Oyne 1H1lIlajil30BaHa BaraMM 3 HAMHMXUYMM [IOKa3HUKOM

napamerpa "monitor"

20

30epirae Momesib OJiS [IONAJIBIIOTO BaBaHAaXeHHSH
model checkpoint = tf.keras.callbacks.ModelCheckpoint (
filepath="'my model', # wmwnAx »Do nanku, ne Oyne 30epexXeHO
MOIEeJIb
monitor="'val loss',
save best only=True, # 4akmwo mnapamMeTp BUCTaBJ€HO B true, TO
30eplraeTbCcd T1JbKM Kpalla MOIEJb
mode="min'

30epirae Jyiori BMKOHAHHS HABUYaAHHA, SKi1 MOXHa Oyne INOIMBUTHUCE B
crelnlajJbHOMy cepenoBuml TensorBoard
tensorboard = tf.keras.callbacks.TensorBoard (

log dir='log', # mnax »o nanku e OynyTb 30epiraTucChb JIOT1.

21

HaBunmo 1110 X MOJI€JIb, aJI€ BXKE BUKOPUCTOBYIOYH 3BOPOTHI BUKJIMKH.

model.fit (
X,
Y,
validation split=0.2,
epochs=50,
EENsclilisiize = 8,
callbacks = |

early stopping,
model checkpoint,

tensorboard

poch 1/50

10/10 [============================== - 0Os 10ms/step - loss: 0.1864 -

mean absolute error: 0.

INFO:tensorflow:Assets
Epoch 2/50

3616 - val loss: 0.2080 - val mean absolute error: 0.3932
written to: my model/assets

10/10 e ———] - Os dms/step — loss: 0.1831 -

mean absolute error: 0.

INFO:tensorflow:Assets

3582 - val loss: 0.2025 - val mean absolute error: 0.3879
written to: my model/assets

22

Epoch 48/50

BO/AL0 [s=============================] = (IsimsiAsiace
- loss: 0.1002 - mean absolute error: 0.2049 -
val loss: 0.1149 - val mean absolute error: 0.3030

INFO:tensorflow:Assets written to: my model/assets
Epoch 49/50

[0/ L0 [==============================] - (5 Zms/isieep
loss: 0.0997 - mean absolute error: 0.20641 -
al loss: 0.1145 - val mean absolute error: 0.3023
INFO:tensorflow:Assets written to: my model/assets
Epoch 50/50

10/10 [==============================] - (s 6ms/step
- loss: 0.0987 - mean absolute error: 0.26033 -
val loss: 0.1130 - val mean absolute error: 0.3007

INFO:tensorflow:Assets written to: my model/assets

23

Ak OaumMo, mNpoleC HaBYaHHA 3YNUHHUBCS paHIIE, OCKUIBKM MOJENIb HE
nodimnimryBajacs. B pesynprari € 1 30epekeHa MOJeNb, i1 MOXKHa BIJIHOBHUTH 3a
nomomororo tf.saved model.load(). JIkmo HE BHMKOPHUCTOBYBAaTH
ModelCheckpoint, Moaenb MOXXHaA 30€perTH METOA0M save ().
model.save ("my model")

model restore = tf.saved model.load("my model")
INFO:tensorflow:Assets written to: my model/assets

MoxHa MOAMBUTHCH 1 SK MOACIb Hapdajacsa. I 1boro HEOOX1JHO BUKIIMKATU
TensorBoard.
sload ext tensorboard

$tensorboard --logdir "log"

The tensorboard extension 1s already loaded. To reload
1t, use:

sreload ext tensorboard
Reusing TensorBoard on port 6006 (pid 287), started
0:01:15 ago. (Use '!kill 287' to kill 1t.)

24

epoch_loss

epoch_lose

9y, epuch_luss

‘\\' ’\\\
\\\
. I »

—
~—

"t '_.

Puc.3 /luHamika HaBYaHHS MOJEI1

OuiHka mopeni

OcTaHHE, IO HaM 3aJIMIINIOCS, - OLIHUTH HABYCHY MoAciab. I ToMy €
MeTon evaluate () . Hanpukiiag cTBOpHUMO TECTOBI J1aHI:

X test = np.array(np.random.random((10, 5)))

Y test = np.array(np.random.random((10)))

= model.evaluate (X test, Y test)
print ("loss and mean absolute error", res)

(=== aaaaaaass === y Os
2lms/step - loss: 0.1259 - mean absolute error:
0.3187

loss and mean absolute error [0.1258658617734909,
0.3187190890312195]

Jl1st oTpruMaHHA niepe0adyBaHUX 3Ha4€Hb BUKOPUCTOBYWTE predict ().
predictions = model.predict (X test)
print (predictions)

Busin:
[[0.2159217]

[O.

[0

O O O oo o O

27331777
438170377

]
]
. 1428387]
.2788944]
.41930375]
.39496048]
.30358872]
.28828045]
.3757842]

]
27

