
Тема: Тестування продуктивності та надійності 
програмного забезпечення

Лектор: асистент кафедри комп’ютерних 
наук Українець Микола Олександрович

Тестування, верифікація та валідація програмного забезпечення

Лекція №7



Питання лекції

1. Тестування продуктивності. Тестування надійності.
2. Метрики для оцінки продуктивності та надійності 

програмного забезпечення.
3. Інструменти для тестування продуктивності.



Тестування продуктивності та його важливість
Продуктивність (Performance Efficiency) - здатність 
ПЗ при заданих умовах забезпечувати необхідну 
працездатність стосовно виділених для цього 
ресурсів. Можна визначити її і як відношення 
одержуваних за допомогою ПЗ результатів до 
затрачуваних на це ресурсів усіх типів.

ISO/IEC 25010 включає performance efficiency серед 
головних характеристик якості.

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0


Тестування продуктивності та його важливість
Тестування продуктивності (Performance Testing) – яке проводиться для визначення наскільки 
стабільно і як швидко працює програма або її частина під деяким навантаженням. Метою тестування 
є вузьких місць (bottlenecks) в системі, визначення швидкості завантаження даних і їх обробки, 
надійності програми.

Цілі тестування продуктивності:
● Перевірити, як система поводиться під різними навантаженнями.
● Виявити вузькі місця (bottlenecks).
● Виміряти швидкість реакції, стабільність, масштабованість.
● Порівняти реальні показники з очікуваними.
● Підготувати систему до production-навантаження.



Тестування продуктивності та його важливість
Чому тестування продуктивності важливе?
● У сучасному світі швидкодія = конкурентна 

перевага
● Забезпечує хороший користувацький досвід
● Знижує ризики збою в production-середовищі
● Виявляє "вузькі місця" на ранніх етапах 

процесу розробки.
● Перевіряє готовність до сценаріїв, таких як 

різкі стрибки трафіку або тривале 
використання.



Види тестування продуктивності
Вид тестування Мета Приклад сценарію

Load Testing Виміряти поведінку при типовому навантаженні 100 користувачів одночасно оформлюють 
замовлення

Stress Testing Перевірити межі системи при перевищенні ліміту 10 000 користувачів роблять запит одночасно

Spike Testing Оцінити реакцію системи на раптовий стрибок 
навантаження

Різкий підйом кількості запитів до 10 разів за секунду

Endurance (Soak) 
Testing

Перевірити стабільність протягом тривалого 
часу

Сервіс працює 24 години з постійним навантаженням

Scalability Testing Визначити, як система масштабується Додавання серверів при рості трафіку

Volume Testing Перевірити ефективність роботи з великими 
обсягами даних

Обробка мільйона записів у БД



Метрики для оцінки продуктивності

Метрика Зміст Одиниця виміру

Response Time Загальний час комунікації між клієнтом і 
сервером

мс, с

Throughput Кількість операцій за одиницю часу запитів/с

Latency Затримка між запитом і відповіддю мс

Error Rate Частка невдалих запитів %

CPU / Memory Usage Ресурсне навантаження системи %

Concurrency Level Кількість одночасних користувачів к-сть користувачів



Метрики для оцінки продуктивності
Час відповіді API (API Response Time) — це загальний час клієнт-серверної взаємодії. Він показує, скільки часу 
потрібно API, щоб відповісти на запит клієнта. До цього часу входить як обробка запиту на сервері, так і передача 
відповіді назад клієнту.
Іншими словами, це проміжок від моменту, коли клієнт надсилає запит, до моменту отримання відповіді.
Якщо запит виконується повільно — це означає, що час відповіді занадто великий. Будь-який фактор, який спричиняє 
уповільнення, впливає на збільшення цього показника.

Час відповіді складається з двох основних компонентів:
Затримка (latency) — час, необхідний для передачі даних між клієнтом і сервером.
Час обробки (processing time) — час, який потрібен серверу для обробки запиту та формування відповіді.

На latency можуть впливати такі чинники:
● швидкість мережі,
● навантаження на сервер,
● продуктивність балансувальника навантаження,
● розмір переданих даних,
● архітектура та якість дизайну API.



Методика проведення тестування продуктивності.
1. Аналіз вимог — що саме хочемо перевірити.
2. Планування сценаріїв — визначення користувацьких 

потоків (login, search, checkout).
3. Підготовка середовища — створення окремої 

ізольованої тестової інфраструктури.
4. Запуск тестів — у контрольованих умовах.
5. Збір та аналіз метрик — CPU, пам’ять, latency, throughput.
6. Виявлення вузьких місць — наприклад, повільні SQL-

запити або блокування потоків.
7. Оптимізація та повторне тестування.



Тестування надійності
Надійність (Reliability) – здатність ПЗ виконувати необхідні завдання у зазначених умовах протягом 
заданого проміжку часу або вказаної кількості операцій. Атрибути даної характеристики – це 
завершеність і цілісність всієї системи, здатність самостійно і коректно відновлюватися після збоїв у 
роботі, відмовостійкість.

Тестування надійності — це вид тестування програмного забезпечення, який перевіряє, чи може 
програмне забезпечення виконувати безвідмовну роботу в певному середовищі протягом 
визначеного періоду часу.



Види тестування надійності

Тип Мета

Stability Testing Перевірити роботу системи при тривалому використанні

Recovery Testing Перевірити, як система відновлюється після збою

Failover Testing Тестування поведінки при відмові одного з серверів

Chaos Testing Імітація випадкових збоїв компонентів системи



Метрики тестування надійності

Метрика Зміст

MTBF (Mean Time Between 
Failures)

Середній час між відмовами. MTBF = MTTF + MTTR

MTTF (Mean Time To Failures): Різниця в часі між двома послідовними збоями.

MTTR (Mean Time To Repair) Середній час відновлення

Availability Доступність системи, наприклад 99.9%

Error Resilience Здатність системи продовжувати роботу при часткових 
збоях



Інструменти для тестування продуктивності
Під час тестування швидкодії важливо правильно обрати інструмент, який 
відповідає типу системи, навантаженню та вашим цілям. Нижче наведено 
популярні рішення, які допомагають автоматизувати перевірку 
продуктивності:

Apache JMeter — класичний open-source інструмент для тестування 
вебдодатків, API та баз даних. Підтримує різні типи запитів і має зручний 
графічний інтерфейс.
Gatling — високопродуктивний інструмент, написаний на Scala. Добре 
інтегрується в CI/CD конвеєри, забезпечує детальну аналітику результатів.
Locust — гнучкий інструмент на Python, що дозволяє створювати сценарії 
тестування у вигляді коду. Зручний для розробників, які хочуть 
автоматизувати навантажувальні тести.
k6 — сучасний інструмент командного рядка з підтримкою JavaScript-
сценаріїв. Часто використовується у DevOps середовищі, легко інтегрується 
з CI/CD.
LoadRunner — комерційне рішення корпоративного рівня, яке підтримує 
різні протоколи та забезпечує високу точність моделювання навантаження.
Artillery.io — простий інструмент для Node.js, зручний для тестування API та 
мікросервісів, має зрозумілий синтаксис і легку інтеграцію з CI/CD.



Корисні посилання
1. https://www.testrail.com/blog/performance-testing-types/ 
2. https://blog.sentry.io/whats-the-difference-between-api-latency-and-api-respo

nse-time/ 
3. https://training.qatestlab.com/blog/technical-articles/performance-testing/ 

https://www.testrail.com/blog/performance-testing-types/
https://blog.sentry.io/whats-the-difference-between-api-latency-and-api-response-time/
https://blog.sentry.io/whats-the-difference-between-api-latency-and-api-response-time/
https://training.qatestlab.com/blog/technical-articles/performance-testing/


Дякую за увагу!


