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2. ГЕОМЕТРІЯ ЗЕМНОГО ЕЛІПСОЇДА  

Тема 2.2: Зв’язки між координатами  

 

1. Зв'язок між геодезичною, приведеною і геоцентричною широтами.  

2. Зв’язки між різними видами координат.  

 

1. Зв'язок між геодезичною, приведеною і геоцентричною широтами.  

Для того щоб встановити зв'язок геодезичної широти В з приведеною и, розглянемо який-

небудь меридіан, наприклад, такий, площиною якого є площина zx. Для цього меридіана 

L = const і його рівняння в параметричній формі отримаємо із рівнянь (2.10).  
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Рис. 2.4  

Із останньої формули легко можна отримати 
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Ввівши позначення  
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отримаємо наступні формули зв'язку між геодезичною B  та приведеною u  широтами 

.sinsin;cos1cos 2 uVBueVB   (2.18) 

Приймаючи до уваги третю формулу (2.5), отримаємо  
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.1 2 tgBetgu   (2.19) 

На основі формул (2.15) та (2.19) зв'язок між геоцентричною широтою Ф та геодезичною 

В буде наступним  

.)1(Ф 2 tgBetg    (2.20) 

Для подальшого викладу нам будуть необхідні ще наступні залежності, що отримуються 

із (2.19)  
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Якщо ввести позначення  

,sin1 22 BeW   (2.22) 

то формули (2.21) будуть мати наступний вид  
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Згідно формул (2.23) і (2.18) можна записати зв'язок між величинами V та W  

.1 2eVW   (2.24) 

Із формули (2.24) з врахуванням (2.22) та зв'язку між ексцентриситетами (перша формула 

із 2.5) отримаємо вираз для V у функції геодезичної широти B   

.cos1 22 BeV   (2.25) 

Функції V та W називають ще основними сфероїдними функціями геодезичної широти.  

У сфероїдній геодезії часто використовується позначення  

,cos  Be  (2.26) 

тоді  

.1 22 V  (2.27) 

 

2. Зв’язки між різними видами координат.  

Між просторовими прямокутними (декартовими) ZYX ,,  та геоцентричними LФ,  

координатами, на основі формул (2.10)  
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та отриманих співвідношень (2.16), існують прості математичні залежності  
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 (2.28) 

Радіус-вектор еліпсоїда er  визначається із (2.17).  

Обернені залежності, на основі (2.28), будуть мати наступний вид  
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Між просторовими прямокутними координатами X, Y, Z , приведеною широтою и та 

геодезичною довготою L на основі формул (2.10) та отриманих співвідношень між великою та 

малою півосями (див. третю формулу (2.5)), існують наступні залежності  
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Обернені залежності, на основі (2.30), будуть мати наступний вид 
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 (2.31) 

Враховуючи співвідношення (2.20) та (2.30), для поверхневих еліпсоїдних координат B,L 

та декартових X,Y,Z формули зв'язку мають вид  
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Вираз 
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 позначимо через N  і, як буде видно із подальшого викладу, це є 

рівняння для радіуса кривини першого вертикалу заданої точки на поверхні еліпсоїда у 

функції геодезичної широти. Остаточно, формули зв’язку будуть наступними:  
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Обернені залежності будуть мати наступний вид 
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Перша формула (2.33) отримана простим перетворенням (шляхом ділення другої 

формули (2.32) на першу). Друга формула (2.33) отримана наступним чином. Із перших двох 

формул (2.32) отримаємо  

.cos22 BNYX    

Поділивши третє рівняння (2.32) на отримане, дістанемо остаточно друге рівняння (2.33).  

Зв’язок між геодезичними координатами HLB ,,  та декартовими ZYX ,,  отримаємо 

наступним чином. Спроектуємо висоту H  на відповідні осі. Тоді проекції висоти будуть 

виражені залежностями  
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Або 
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Обернені залежності будуть мати наступний вид  
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Вираз для обчислення довготи L  знаходимо аналогічно (2.33), а обчислення широти B , 

як видно із (2.35) вимагає застосування процесу наближень. Формула для B  отримана 

наступним чином. На основі рівнянь (2.34), після нескладних перетворень, можемо отримати  
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Поділимо чисельник і знаменник у другому доданку (2.36) на Bcos  і в результаті 

перетворень отримаємо  
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 та після деяких перетворень, 

остаточно отримаємо формулу, яка після відповідних позначень буде відповідати (2.35).  

Що стосується переходу від поверхневих еліпсоїдних координат B, L до плоских x, y, то 

вид формул залежить від способу зображення (проекції) поверхні еліпсоїда на площині. Для 

проекції Гаусса-Крюгера формули зв'язку будуть приведенні при розгляді відповідної теми.  


