
Лекція: Моделювання архітектури ПЗ за допомогою C4-моделі

Мета: Зрозуміти принципи, рівні деталізації та практичне застосування нотації C4 для
візуалізації та документування архітектури програмного забезпечення.

1. Вступ: Проблема, яку вирішує C4

Часто технічна документація або:

• Відсутня взагалі ("діра в пам'яті").

• Застаріла і не відповідає реальності.

• Надто детальна і складна для розуміння нетехнічними спеціалістами
(менеджерами, замовниками).

• Надто абстрактна і не дає відповіді на конкретні питання розробників.

C4-модель — це набір конвенцій для створення карт архітектури вашого ПЗ, подібно
до того, як Google Maps показує різні рівні деталізації: від країни до окремої вулиці.

Основні принципи C4:

1. Контекст: Система в оточенні.

2. Контейнери: Як система складається з основних "шматків".

3. Компоненти: Як влаштований кожен "шматок".

4. Код: Детальна реалізація компонентів (за допомогою UML діаграм класів
тощо).

Назва "C4" походить від перших літер перших чотирьох рівнів: Context, Containers,
Components, Code.

2. Чотири рівні C4-моделі

Рівень 1: Діаграма контексту (System Context Diagram)

• Аудиторія: Будь-хто, від замовника до нетехнічного керівника та нового
розробника.

• Відповідає на питання: Що робить система? З ким/чим взаємодіє?

• Що зображає:

o Один головний Прямокутник — ваша система, що розглядається.

o Люди-користувачі (Actors) та зовнішні системи, з якими взаємодіє
ваша система.

o Стрілки, що показують потік даних і напрямок взаємодії.

• Не показує: Технології, протоколи, деталі реалізації.

Рівень 2: Діаграма контейнерів (Container Diagram)

• Аудиторія: Архітектори, розробники, DevOps-інженери.

• Відповідає на питання: Як система влаштована "під капотом"? Які основні
технологічні блоки?

• Що зображає:

o Контейнери. Контейнер — це окремий процес, що виконує код або
зберігає дані (наприклад, веб-додаток, мобільний додаток, серверна
API, база даних, файлова система, мікросервіс). Кожен контейнер живе
окремо і може бути розгорнутий самостійно.

o Взаємодії між цими контейнерами.

o Технологічний стек для кожного контейнера (наприклад, "Angular",
"Spring Boot", "PostgreSQL").

• Не показує: Деталі внутрішньої структури кожного контейнера.

Рівень 3: Діаграма компонентів (Component Diagram)

• Аудиторія: Архітектори та розробники.

• Відповідає на питання: Як влаштований один конкретний контейнер? Які
логічні блоки (компоненти) всередині нього відповідають за конкретні функції?

• Що зображає:

o Компоненти всередині одного контейнера. Компонент — це група
пов'язаних функцій (модуль, клас, група класів),
наприклад, UserController, OrderService, EmailRepository.

o Взаємодії між компонентами та зовнішніми сутностями (іншими
контейнерами або системами).

• Не показує: Детальну реалізацію в коді.

Рівень 4: Діаграма коду (Code Diagram)

• Аудиторія: Розробники.

• Відповідає на питання: Як реалізований конкретний компонент?

• Що зображає: Детальні діаграми, створені за допомогою інструментів
(наприклад, UML діаграми класів, ER-діаграми для бази даних). Цей рівень
рідко малюється вручну, його часто генерують автоматично з коду (за
допомогою IDE або спеціальних інструментів).

3. Практичний приклад: Розробка системи "Інтернет-Магазин"

Розглянемо створення архітектурної документації для простого інтернет-магазину.

Крок 1: Діаграма Контексту (Рівень 1)

Система: Інтернет-Магазин "TechStore"

Користувачі:

• Клієнт: Переглядає товари, робить замовлення.

• Менеджер з продажу: Оновлює каталог товарів, переглядає замовлення.

Зовнішні системи:

• Платіжний шлюз (Payment Gateway): Для обробки платежів (наприклад,
Stripe).

• Служба доставки (Email Service): Для відправки листів-підтверджень
(наприклад, SendGrid).

• Система складського обліку (Warehouse System): Для перевірки наявності
товару.

Діаграма Контексту:

(Стрілки підписані: "Переглядає каталог / Робить замовлення", "Сповіщає про
статус", "Оновлює каталог", "Надсилає платіж", "Надсилає email", "Перевіряє
наявність")

@startuml TechStore Context Diagram
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-
PlantUML/master/C4.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-
PlantUML/master/C4_Context.puml

title System Context Diagram for "TechStore" Internet Shop

Person(customer, "Клієнт", "Користувач, який переглядає товари та робить
замовлення")
Person(manager, "Менеджер з продажу", "Працівник, який оновлює каталог та
переглядає замовлення")

System(techstore, "Інтернет-Магазин \"TechStore\"", "Онлайн-система для продажу
товарів")

System_Ext(payment_gateway, "Платіжний шлюз", "Stripe API")
System_Ext(email_service, "Служба доставки email", "SendGrid API")
System_Ext(warehouse_system, "Система складського обліку", "Внутрішня система
управління складом")

' Взаємодії
Rel(customer, techstore, "Переглядає каталог, робить замовлення")
Rel(techstore, customer, "Надсилає підтвердження замовлення")

Rel(manager, techstore, "Оновлює каталог товарів, переглядає замовлення")

Rel(techstore, payment_gateway, "Надсилає запит на оплату", "HTTPS")
Rel(payment_gateway, techstore, "Повертає статус платежу", "HTTPS")

Rel(techstore, email_service, "Надсилає email-сповіщення", "SMTP/API")

Rel(techstore, warehouse_system, "Перевіряє наявність товару", "REST API")
Rel(warehouse_system, techstore, "Повертає інформацію про наявність", "REST API")

@enduml
Висновок: Ми визначили межі системи та всі ключові зовнішні точки контакту.

Крок 2: Діаграма Контейнерів (Рівень 2)

Розкриваємо "TechStore". Він складається з таких контейнерів:

1. Веб-додаток (Single-Page Application): Клієнтська частина, написана на React.
Взаємодіє з сервером через API.

2. Серверна частина (Backend API): Основний бізнес-логік, написаний на Spring
Boot. Обробляє запити від веб-додатку.

3. База даних (Database): Зберігає дані про товари, замовлення, клієнтів.
Використовує PostgreSQL.

4. Мобільний додаток (Mobile App): Додаток для iOS/Android (наприклад, на
React Native), який також використовує Backend API.

Діаграма Контейнерів:

(Стрілки підписані відповідними HTTP-запитами та діями)

@startuml TechStore Container Diagram
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-
PlantUML/master/C4.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-
PlantUML/master/C4_Container.puml

title Container Diagram for "TechStore" Internet Shop

Person(customer, "Клієнт", "Користувач інтернет-магазину")
Person(manager, "Менеджер з продажу", "Працівник магазину")

System_Boundary(techstore_boundary, "Інтернет-Магазин \"TechStore\"") {
 Container(spa, "Веб-додаток", "React", "Single-Page Application, клієнтський
інтерфейс")
 Container(mobile_app, "Мобільний додаток", "React Native", "Мобільний додаток для
iOS/Android")
 Container(backend, "Серверна частина", "Spring Boot", "REST API, бізнес-логіка")
 ContainerDb(database, "База даних", "PostgreSQL", "Зберігання даних про товари,
замовлення, користувачів")
}

System_Ext(payment_gateway, "Платіжний шлюз", "Stripe API")
System_Ext(email_service, "Служба доставки email", "SendGrid API")
System_Ext(warehouse_system, "Система складського обліку", "REST API")

' Взаємодії між контейнерами
Rel(customer, spa, "Використовує", "HTTPS")
Rel(customer, mobile_app, "Використовує", "HTTPS")

Rel(spa, backend, "Викликає API", "REST/HTTPS")
Rel(mobile_app, backend, "Викликає API", "REST/HTTPS")

Rel(manager, backend, "Використовує адмін-панель", "HTTPS")

Rel(backend, database, "Зчитує/записує дані", "JDBC")
Rel(backend, payment_gateway, "Ініціює платежі", "REST/HTTPS")
Rel(backend, email_service, "Надсилає сповіщення", "SMTP/API")
Rel(backend, warehouse_system, "Перевіряє наявність", "REST/HTTPS")

@enduml
Висновок: Тепер ми бачимо технологічний стек і основні архітектурні рішення.
Зрозуміло, що бізнес-логіка централізована в Backend API.

Крок 3: Діаграма Компонентів (Рівень 3)

Деталізуємо найважливіший контейнер — Серверна частина (Spring Boot). Він
містить такі компоненти:

• UserController: Обробляє HTTP-запити, пов'язані з користувачами (реєстрація,
логін).

• ProductController: Обробляє запити на отримання каталогу товарів.

• OrderController: Обробляє створення та перегляд замовлень.

• OrderService: Основний клас бізнес-логіки для роботи з замовленнями
(створення, перевірка, оновлення статусу).

• PaymentService: Відповідає за взаємодію з платіжним шлюзом.

• EmailService: Відповідає за відправку email-сповіщень.

• UserRepository / ProductRepository / OrderRepository: Компоненти, що
відповідають за звернення до бази даних.

Діаграма Компонентів (для Backend API):

Висновок: Ця діаграма дає розробнику чітке уявлення про структуру коду серверної
частини, ключові залежності між компонентами та їх відповідальність.

@startuml TechStore Component Diagram
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-
PlantUML/master/C4.puml
!includeurl https://raw.githubusercontent.com/plantuml-stdlib/C4-
PlantUML/master/C4_Component.puml

title Component Diagram for Backend API

Container_Boundary(backend, "Серверна частина (Spring Boot Application)") {

 Component(user_controller, "UserController", "REST API", "Обробляє HTTP-запити для
користувачів")
 Component(product_controller, "ProductController", "REST API", "Обробляє HTTP-
запити для товарів")
 Component(order_controller, "OrderController", "REST API", "Обробляє HTTP-запити
для замовлень")

 Component(user_service, "UserService", "Spring Service", "Бізнес-логіка для
користувачів")
 Component(product_service, "ProductService", "Spring Service", "Бізнес-логіка для
товарів")
 Component(order_service, "OrderService", "Spring Service", "Бізнес-логіка для
замовлень")

 Component(payment_service, "PaymentService", "Spring Service", "Інтеграція з
платіжними системами")
 Component(email_service, "EmailService", "Spring Service", "Відправка email-
сповіщень")

 Component(user_repository, "UserRepository", "JpaRepository", "Доступ до даних
користувачів")
 Component(product_repository, "ProductRepository", "JpaRepository", "Доступ до даних
товарів")
 Component(order_repository, "OrderRepository", "JpaRepository", "Доступ до даних
замовлень")
}

ContainerDb(database, "База даних", "PostgreSQL", "Зберігання даних")

System_Ext(payment_gateway, "Платіжний шлюз", "Stripe")
System_Ext(external_email_service, "Служба доставки email", "SendGrid")
System_Ext(warehouse_system, "Система складського обліку", "REST API")

' Взаємодії між компонентами
Rel(user_controller, user_service, "Викликає", "Java method")
Rel(product_controller, product_service, "Викликає", "Java method")
Rel(order_controller, order_service, "Викликає", "Java method")

Rel(user_service, user_repository, "Використовує", "Java method")
Rel(product_service, product_repository, "Використовує", "Java method")
Rel(order_service, order_repository, "Використовує", "Java method")

Rel(order_service, payment_service, "Викликає для обробки платежу", "Java method")
Rel(order_service, email_service, "Викликає для відправки сповіщення", "Java method")

Rel(user_repository, database, "Зчитує/записує", "JDBC")
Rel(product_repository, database, "Зчитує/записує", "JDBC")
Rel(order_repository, database, "Зчитує/записує", "JDBC")

Rel(payment_service, payment_gateway, "Викликає API", "REST/HTTPS")
Rel(email_service, external_email_service, "Надсилає email", "SMTP/API")
Rel(product_service, warehouse_system, "Перевіряє наявність", "REST/HTTPS")

@enduml

4. Інструменти для створення C4-діаграм

• Structurizr: Офіційний інструмент (як SaaS, так і локальна версія), що підтримує
текстове описання діаграм (DSL).

• Draw.io / Diagrams.net: Безкоштовний і популярний інструмент з готовими
бібліотеками шаблонів C4.

• PlantUML: Текстовий інструмент для створення діаграм, має підтримку C4
через додаткові бібліотеки.

• Miro / Lucidchart: Онлайн-дошки з можливістю створення C4-діаграм.

5. Висновки

• C4-модель — це мова спілкування. Вона дозволяє ефективно комунікувати
про архітектуру між різними групами стейкхолдерів.

• "Карти, або картини". C4 створює саме "карти" архітектури, які можна
"збільшувати" та "зменшувати", а не розрізнені художні картини.

• Простота та стандартизація. Використання стандартного набору абстракцій
(Система, Контейнер, Компонент) робить діаграми зрозумілими та
послідовними.

• Починайте з контексту. Це найважливіший крок, який визначає всю
подальшу структуру.

C4-модель не вимагає складних інструментів — почати можна з простого блокнота
або маркера на дошці. Головне — це філософія поступового розкриття деталей.

https://draw.io/
https://diagrams.net/

