NEKLIA
UM PEFPECIN. MALLMHHE HABYAHHA.
EFrYNAPU3ALUIA. NMPAKTUYHA PEANIBALIA

Jininni mooeni 0aa knacuikauii:
Jozicmuuna pezpecis.
3aBaaHHs Kiacu@iKalli € OJHUM 13 HaWBa)XKJIMBIIIMX 1 IOIIMPEHUX 3aBlaHb. Ii
OCHOBHAa ME€Ta MOJISITa€ y IIOAUIl JAHUX Ha KJIacu BIAIOBIAHO A0 3aJaHUX
o3HaK. JIiHIMHI MOAEAl € OJHHUM 13 HaMOUIbLI MOMYJSPHMX IIAXOMIB OO

BUPIIICHHS 3a]1a41 KJIacHu(I1KaIlli.

B naHiii JIeKmii MU pO3ITISTHEMO, SIK BUKOPHCTOBYBATH JiHIMHI Mozmem Python
PIIICHHS 3aJa41 KJ1acu(iKaliii.

Jininna moodens - 1e MareMaTHdHa MOJEIb, SKa € JIHIMHOIO

OMOIHAIIIE0 BXIJHUX O3HAK. Y 3ajgadl KiIacu@iKamli JHIAHA MOJEIb
BUKOPHUCTOBYETHCS I MOALIY JAHUX Ha JiBa a00 OLIbIIIE KJIACIB.

Python mamae 6araro 61061i0TeK M1t poOOTH 3 JiHIMHMMH Monersvu. OmHa 3
HAUIIOMYJIAPHIMKX 010110TeK 111 poOOTH 3 JiHIHHUMEU MoxelrssMu B Python e
scikit-learn. Scikit-learn magae 6e3m4 aarOpUTMIB MAITMHHOTO HABYAHHS, Y
TOMY YMCJI1 ¥ JIHIAHI MoAeml Ui Knacu@ikamii. OgHIEr0 3 TaKuX MOJECICH €
JIOTICTUYHA PErpecisi.

JlorictruuHa perpecis - € aJITOPUTM MAIIMHHOIO HABYAHHS,
SKMHA BHUKOPHUCTOBYETHCS JUISI BHUPIIMICHHA 3aja4l Ol1HApHOI
KJIacu@ikailii, To0TO MOAUIy JaHMX Ha JBa Kiaacu. BoHa orpumaia

CBOIO Ha3BY 3aBISKH TOMY, III0 BUKOPHUCTOBYE JIOTICTUYHY (DYHKII1IO
11 IPOTrHO3YBAaHHS MMOBIPHOCTI IPHHAICKHOCTI 00'€KTa OTHOIO 3
KJIAC1B.

- JloricTHyHa perpecis BHKOPUCTOBYE JIiHIMHY KOMOIHAIiIO

ITHAX O3HAaK Ta BIAINOBIAHUX Bar, sKa OIMCYE JIHIMHY
TIIEPILIONIAHY Yy IPOCTOpl 03HAK. [IoTIM 1ier pe3ynbrar MpOXOAUTh
4yepes JIOTICTUYHY (DYHKIIIIO, SIKa IIEPEBOAUTD JIIHIMHY KOMOIHAI[IKO Ha
MMOBIPHICTh IIPUHAJICKHOCTI 00'€KTa 10 OQHOTO 3 KJIACIB.

[Io cyT1 JoricTu4Ha perpecis IpoCTO BUKOPUCTOBYE PIBHSIHHSA
JTIHIMHOI perpecii 1 3acTOBY€ MOro sK IIapaMeTp CUIMOBHIHOI
(dyHKI1T. MaTeMaTu4HO 11€ BUPAXKAETHCS HACTYITHUM YHMHOM:

1
l T E’._'j--'_-jl-"fl_jj-ll'::—...—.ﬁ.,._‘f_., (1)

P(Y = 1/X)

i (Sh

Y -~ 61HapHmit Buxigauii pesynsrat (0 a6o 1);

X - BEKTOD O3HaK, SIKHM BUKOPUCTOBYETHCS ISl IPOTHO3YBaHHS Y
P(Y=1|X) — #imoBipHICTb TOTO, 1110 Y JOpiBHIOE 1 IMpH 3agaHOMY X;
betal, betal, beta2, ..., betap - koedimienTn Moxaei, K1 MOTPIOHO
BU3HAYUTA B XOJ1 HAaBYaHHS, MO0 JOCIITH HaWKpauloi
BUIIIOBLTHOCTI JIAHUX

e - ynciio Ennepa.

Jozicmuuna pezpecia TakoX MOXE OyTHM BHKOPHCTAaHA s
0araTokJIacoBO1 KJIacH(iKailli, KOJIX HEOOXI1JHO PO3AUIMTH JaH1 Ha
O1JIbII HUK ABa KiacH. s 1iboro Hap4daroTh K Moaenen, KoxkHa 3 SKUX
BIAPI3HSAETHCS JUIIE IIILOBUM KiacoMm. Ilo cyTi, 3aBgaHHs OlHapHOI1
KJIacu(p1KaIlll BUPIITYETHCS KUTbKA Pa3iB 1 BUIAETHCA CYKYITHE PIIICHHS

NEKUIBKOX MOJEIICH.

B/ mimomy, JorictTudHa perpecis — € IOTY>KHUM 1HCTPYMEHT JIJIs
UpIIICHHS 3aBJaHb OlIHApHOI Ta 0araTrokKJacoBOl Kiacu(Ilkaiil y
Python.

BoHa mpocTra y BHKOpPHUCTaHHI Ta Hajae O€3/114 METPHUK IJISI OLIIHKH

SIKOCT1 pOOOTH MOZEIII.

Peajizanisi uukJy HaBYaHHA JIOricTHYHOI perpecii y Python.
Peamizaiiss LUKy HaBYaHHS JIOTICTUYHOI perpecii 3a JIOIIOMOIOI0
Python 1 6i6motexu PyTorch.

IMIopTyemMo Bc1 HEOOX1IH1 010J110TEKMU:

import torch
import torch.nn as nn
Import torch.optim as optim

import numpy as np

from sklearn.datasets import
make classification

from sklearn.metrics import
classification report

Jlam Hanuiemo Kjac, SKWiM peaji3ye JIOTICTUYHY perpecito. Bapro 3BepHyTH
yBary, 110 BIJ JIHIMHOI perpecii, BIAPI3HSAETHCS JIMIIE 3aCTOCYBAaHHSM CHUIMOIAW Ta
HOBUM MeToaoM Predict (oCKiIBKHM Telep MU BUPIIIYEMO 3aBIaHHS KiIacHQiKarlii).

class LogisticRegression (nn.Module) :

def init (self, input size):
super (). 1init ()
self.weights = nn.Parameter (torch.randn (input size, 1))

self.sigmoid = nn.Sigmoid ()

def forward(self, x):
X = x @ self.weights
X = self.sigmoid (x)
return x

def fit(self, X, y, 1lr=0.01, num iterations=1000):
X = torch.from numpy (X) .float ()
y = torch.from numpy(y).float () .view(-1, 1)
IniugianisyeMo QyHKLIi0 BTpaT Ta OMNTMMI13aTop
criterion = nn.BCELoss ()
optimizer = optim.SGD(self.parameters(), lr=lr)

for epoch in range (num iterations):
BaHyJIOEMO I'palleHTu
optimizer.zero grad()
OrTpuMmyemo mnepenbadyeHHs MOIeJIli Ta oOOuMCIJIeEMO QYHKIIID BTpAaT
y _pred = self (X)
loss = criterion(y pred, y)
OHOBJIOEMO Baru
loss.backward ()
optimizer.step ()
def predict(self, X):
X = torch.from numpy (X) .float ()

OTpuMyeMO mHnepelnbadeHHSa MOIeJI1 Ta [OIPUCBOKEMO MI1TKM KJIaClB Ha OCHOBI1
VMMOB1pPHOCTI1

y pred = self (X)

y pred labels = [1 if 1 > 0.5 else 0 for 1 1in
y pred.detach () .numpy () .flatten ()]

return y pred labels

3reHepyeMo BHOIPKY I8 KJIacH(iKallli caMOCTIMHO, BUKOPHCTOBYIOUH
make_classification i3 6i6mioTeku Scikit-learn. A mami HaBYMMO HaITy MOACHb 1
OIIIHUMO 1i SIKICTb.
I'eHepyeMo IaHi
X, y = make classification(n samples=1000,
n features=2, n redundant=0,
n informative=2, random state=1,
NS fers per class=1)

#/CTBOPIEMO €EK3EMIJIAP KJacy Ta HaBUYaeMO Ha HaBuYaJibH1M

=
O
Q.
)
|_|
I

LoglisticRegression (X.shape[l])
model.fi1t (X, vy, 1lr=0.1, num 1terations=100)

IIporHO3YEMO MITKM KJIAC1B Ha TeCcTOBiM BuUOipIli
y pred = model.predict (X)

print (classification report(y, y pred))

OUT :
precision

accuracy
macro avg
elghted avg

recall

fl-score

. 85
.95

. 90
.90

support

.96
.83

.89
.89

.90
.88

.89
.89
.89

500
500

1000
1000
1000

10

JI1s «4UCTOTH EKCHEPUMEHTY» HaBUHMMO J102ICHUUHY pezpecito 3 010J110TeKU
scikit-learn 1 mo6aunmo, 110 AKICTH OTPUMAHUX MOJACICH MPUOIN3HO OTHAKOBA!

from sklearn.linear model import LogisticRegression
model = LogisticRegression ()

model.fit (X, V)

y _pred = model.predict (X)

print (classification report(y, y pred))

oy
precision recall fl-score support
0 0.90 0.90 0.90 500
1 0.90 0.90 0.90 500
accuracy 0.90 1000
macro avg 0.90 0.90 0.90 1000

weighted avg 0.90 0.90 0.90 1000

OL1HMMO BI3yaJIbHO SIK MOAEJIb IPUMMaE CBOE piiieHHs Puc.1:

UISL r-:’;‘ JretssJn

Puc.1. PimeHHs TOricTHYHOI perpecii.

12

Ak 6aunMo, pe3ynbTaToM POOOTH aITOPUTMY BUCTYIIAE JIIHISA, 10 PO3AUISIE Kiach. SAxkOu
MU BI3yajli3yBajld MOJIEIb y MPOIIECI HABYAHHS IPANIEHTHHM CIIYCKOM, TO IOOa4yuiu 0, K 14
JiHIS M1A0UPAEThCs y TIpoliect onTumMizaiiii Puc.2:

Puc.2. Bizyani3aiis HaB4aHHS IPaJIIEHTHUM CITY CKOM.

13

Ilarocu nocicmuunoi pezpecii'.

[le BIZHOCHO IPOCTHUM aJIrOPUTM, SIKUM BUMAara€ HEBEJIMKO1 K1JIbKOCTI
OOYHCITIOBAJIbHUX PECYPCIB 1 MOKE OyTH €()EKTMBHO BUKOPHCTAaHUH
111 BUPIIICHHS BEJIMKO1 KIIBKOCTI KJIAaCH(PIKAI[IMHUX 3aB/IaHb.
[HTEpIIPETOBAHICTE: JOTICTHYHA PErpecisd J03BOJISIE PO3YMITH, SKI
3MIHHI BIJIMBAIOTH KJIACH(DIKALIIIO 1 SIK.

pairoe 1o00Ope Ha HEBEJIMKHUX HAOOpax JAaHWX: JIOTICTUYHA PETpeCis

MOKa3zye J00p1 pe3yabTaTh Ha HEBEIIMKUX Ha0Opax JaHHUX.

HeBenrka HMOBIpHICTh IIEPEHABYAHHSA: JIOTICTUYHA PErpecis CXUIIbHA
0 MEHII IIepeHAaBYaHHS, OCKUILKM BOHA HE Ma€ 0e3JIu mapaMeTpis,
K1 TIOTP1OHO ONTHUMI3YBaTH.

14

Minycu no2icmuunoi pezpecir'.

[TorpiOHa HOpmami3amiss O3HAK: JOrICTUYHA perpecis
BMMAarae HopMaii3alli O3Hak, 00 rapaHTyBarTH, 110 O3HAKHU
POOJISATH OJJHAKOBUH BHECOK Y MOJEIIb.

[Ipalroe moraHo Ha CKJIQJHUX 3aBJIAHHIX. MOXE IIPallFOBATH
IMOTAaHO Ha 3ajJadax 13 BEJUKOK KUIBKICTIO O3HAK YH
CKJIaJHOIO CTPYKTYPOIO JaHHUX.

JIIHIMHICTE: JOTICTHYHA pErpecis MOpamie JvIe 3
TIHIMHUMA MEKaMH pIIIeHb, M0 OOMEXYye€ 1i 3HaTHICTh
BUPIIIYBATH CKJIaH1 3aBIaHHS KIacH(IKallli.

Hu3bka TOYHICTB: JIOTICTHUYHA PErpecis MOXKE MOKa3yBaTH
HHU3BKY TOYHICTD, SIKIIO KJIACH € JIIHIMHO PO31JIbHUMU.

15

L1 TA L2 PETYJNIAPU3ALLIA.

Y mammuaHOMY HaBuaHHI Ta Data science, perynspuzalis € BaKJIMBOI TESXHIKOIO IS
yIIpaBIlHHS ME€peHaBYaHHSAM Mojell. BoHa gomomara€e yHUKHYTH HAATO CKJIaJHOI
MOJIeNIl, sKa MOXe J00pe MiAJallTyBaTuCs II1I HaBYalbHI JaHl, aje IIOraHo
IpaIfOBaTUME HA HOBUX JIAHHUX.

Mu po3fiissHEMO JBa OCHOBHI TUIM peryisapuzamii: L1 ta L2. Bigbm KOHKpeTHO
PO3MIAHEMO SIK BOHM MPAIlOIOTh, 1 K iX MO)KHa BHKOpHCTOBYyBath B Python s
CTB@PCHHS OLIBIN HAMIMHUX Mojeleli y data science.

LY peryasipu3anisi Takox BimoMa sik Lasso (Least Absolute Shrinkage and Selection
perator) perynaspm3amis Bona 3acHOBaHa Ha nojaBaHHI mTpady, IO JOPIBHIOE
OCOJIFOTHOMY 3HAYEHHIO KOE(IIIEHTIB MOAENI.

16

dopmanbHO, L1 perynspuzarisa goaae B (yHKIIFO BTpaT JOAATKOBUN KOMIIOHEHT,
[0 HaKJIaJae mrpad 3a CKJIaIHICTh MOAEI1, TOOTO BUCOKI Baru:.

eryJIsipu3allsl CXuJIbHA 10 BI1Z0OPY O3HAK, OCKIIBKH MOXE
HIIMTH Bard oO3HaK a0 Hyad. lLle 1go3Bonse npuOparu

€1H(MOpMATHBHI O3HAKH 3 MOZEII, 10 MOXKE 3MCHIINUTH CKJIaIHICTh
MOJIEJI1 Ta MOKPAILMTH 11 y3arajJbHIOKOUY 3JaTHICTb.

Y 616moremi Python scikit-learn, Mo)kHa BHKOPHCTOBYBAaTH
peryisipu3anito L1 nmpu HaB4aHH1 J1HIMHOI perpecii:

from sklearn import linear model

reg = linear model.Lasso (alpha=0.1)

17

Tyr mnapamerp alpha 1e rinepnapamerp, SKHH yIPaBIISEe
«3arajbHOI0 cmjoo» peryimspusamii. Bemmki 3paduenns alpha
B1ITOBIJIAIOTh CUJIBHIIINA PETYJIsIpr3aLll.

L1 peryngpuzanisa € epEeKTUBHUM METOAOM OOpOTHOM 3 MEpEeHaBYaAHHSIM
MOJICJIl Y MAIlMHHOMY HaB4yaHH1. OjHaK, IpU BHUKOPHUCTAaHHI METOXY
IPaJIIEHTHOTO COYCKY, SIKHM € OJHHUM 13 HAWMNOIYJISIPHIIINAX AJIrOPUTMIB
ONTHMMI3aIli Moen, perymsapu3amiss L1 Moxe npuzBecTH 0 JCSKHX
IIPOOIIEM.

okpeMa, L1 perymspmusamis Mae KiJbKa «TOCTPHX» KyTiB (pO3pHBIB) Ha
OKOJIMIIl HYyJs, A€ IMOX1JHAa He BHU3HadyeHa. lle yckimamgHroe OOYHCICHHS
rpajieHTa (YyHKIII BTpaT, KOJM BUKOPHCTOBYEThCS peryiasapuzamis L1.
Meton rpaml€eHTHOTO CIIyCKy BHMAarae, o0 rpaJl€eHT OyB IJIaJKuM 1
Oe3nepepBHUM, MO0 MPaBWJIBHO IpalfOBaTH, 1 ToMYy peryisapuzamis L1
MOK€ OyTH MEHIII €(PEKTUBHA IIPY BUKOPUCTAHH1 IPAJIIEHTHOIO CITYCKY.

18

3amicte L1 perymsgpuzaiii B METOA1 T'paglEHTHOIO CITYCKY
4aCcTO BUKOPHUCTOBYETHCS L2 perynspuzaliis, Tak sSiK BOHa Ma€ OLIbIII
IIaAKy IOX1AHY 1 Kpallle MpaltoBaTy 3 IpaJilcHTHUM cnyckoMm. OJIHaK,
B Jesdkux Bumaakax L1 perymspuzanis Moxe BCe K TakKu
BUKOPHCTOBYBATHUCS B METO/1 I'PAAIEHTHOTO CITYCKY 3 BUKOPUCTAHHSIM

' TeXHIK ONTHUMI3allli, TAKUX SK KOOPAWHATHHMH CIIyCK abo L-
BEGS, sik1 MOXyTh Kparie o0poOaaTi po3puBU (PyHKIII1 BTPAT.

2 PEFYNAPU3ALIA.

Kpim L1 perymsapuzamii, icHye Takox L2 perymsapuzamis (1HOII 3BaHa

Ridge perymsapuzaii€io), ska TaKoXX 3aCTOCOBYEThCS B JIIHIMHIN
perpecii Ta 0araTboX 1HIIAX MOJICISX.

19

L2 perynspuzaiisa TakoXK AOAA€ OO0 ONTHUMI3ALINAHOLI (DYHKINT MOZEI
mTpadHy QYHKIIIO:

[{s1 mTpadHa QyHKIIIS € CYMOIO KBaJpaTiB Baru MOAEN1, MOMHOKEHUX Ha
apaMmeTp peryiaspuzanii. Ile o3Hadae, mo perymspuszamis L2 mrpadye
BEAWK] 3HAYCHHS Bar, 3MYIIYIOUM 1X HAOIMKATHUCS J0 HYJIS, aje Ha BIAMIHY B1J
eryaapuzanii L1 He 3aHymse ix moBHICTIO. Haromicte L2 perynsipuzaliis
mTpadye BEIMKl 3HAYCHHS Bar IVIaJKiIIe 1 Oe3NepepBHO, IO AO3BOJISE OLIBII
BIICBHCHO KE€PYBAaTH KOMIIPOMICOM M1K TOUHICTIO Ta CKJIQAHICTIO MOZEIII.

Kpim Toro, L2 perynspuzaiiisgs MOXe JOIIOMOITH y 3a00IraHH1 MEpEeHaBYaHHS Ta
MOJIIIIEHH] y3arajbHIO04Y0i 3JaTHOCTI MOJEII, a TaKOXX y 3MEHIIEHH] BIUIMBY
IIyMy JaHUX Ha MOZEIb.

20

Y oOiomioremi Python scikit-learn, moxna
BUKOPHUCTOBYBaTH peryiasgpuzamnio L2 mpu HaB4YaHHI
JT1HIMHO1 pErpecti:

from sklearn i1mport linear model

re
yT Tmapamerp alpha ne rinepnapamMerp, SKUU
yIIpaBJIsge 3arajlbHOI0 CHUJIOK peryisapu3arii. Beauki
3HAYECHHS alpha B1IIIOB1IAIOTH CHJIBHIIIIN

= linear model.Ridge (alpha=0.1)

peryJsipu3arii.

21

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.datasets import load diabetes

from sklearn.preprocessing 1mport MinMaxScaler

from sklearn.model selection import train test split

orpmMaemMo pmaTaceTr 3 Oibyiiorexm sklearn

diabetes = load diabetes()

scaler = MinMaxScaler ()

ipputs = scaler.fit transform(diabetes.data)
argets = dilabetes.target

X train, X test, y train, y test = train test split(inputs,
targets, test size=0.3, random state=42)

X train, X test = torch.from numpy (X train).float(),
torch.from numpy (X test) .float ()

y train, y test = torch.from numpy(y train).float() .view(-1, 1),
torch.from numpy(y test).float().view(-1, 1)

22

Hair knac, o peanizye JiHIMHY perpecito, J0MOBHUTHCS JBOMAa HOBUMH METOAAMH, 110
B1AMOB1Iar0Th 32 L1 1 L2 BigmoBiaHO:
class LinearRegression (nn.Module) :

def 1nit (self, input size, output size, lambda):
super (). init ()
self.weights = nn.Parameter (torch.randn (input size,
output size))
self.bias = nn.Parameter (torch.randn (output size))
self.lambda = lambda

def forward(self, Xx):
return x @ self.weights + self.bias

def 11 reg(self):
return self.lambda *torch.sum(torch.abs(self.weights))

def 12 reg(self):
return self.lambda *torch.sum(torch.pow(self.weights, 2))

23

IHiplaJsizalisg MoIesii

input size = X train.shape[1l]

output size = 1

lambda = 0.01
LinearRegression (1nput size,

model
output size, lambda)
JI1 BHU3HAYMMO (DYHKIIF0O BTpaT Ta ONTHUMI3AI[IMHUN

anroput™m. Ha mieit pa3 BukopuctoByemo aiaroputMm L-BFGS.
L-BFGS € wMerogom onTumizaiiii, SKHM BHKOPHCTOBYE
1H(OpMaI[IF0 OPO T'padl€HT (PYHKIT BTpaT, ajie HE € IMPSIMUM
rpaJl€HTHUM METOAOM onTuMizamii. OJHy enoxy HaBYaHHS
Br3HauMMO (yHKIiero fitness step().

24

Tyt e 1 gomaBaTUMEMO HaIlly pEeryispu3aiiio y BUIIAAl mTpady A0 (QyHKINI

BTpar.

Iniugianisyemo QyHKIi0 BTpaT 1 ONTMMizaTop
criterion = nn.MSELoss ()

foptimizer = optim.SGD (model.parameters (), 1lr=0.1)
optimizer = optim.LBFGS (model.parameters(), lr=1.0)

emoxa HaBUaHHA
def fitness step():

utputs = model (X train) # OTpmMMaeMO IPOTHOS
loss = criterion(outputs, y train) # OOumciweMO QyHKII1I BTpPaT
if reg == '11"':
loss += model.ll reg() # Iobammnsgemo L1 perynapusauio
elif reg == "'12"':
loss += model.l2 reg() # JoBaBaaeMo L2 perynapms3allo

BuKOHYEMO ONTMMizaliln HapaMeTpirB MoOmesii

optimizer.zero grad()

loss.backward ()

print (f'Epoch [{epoch+l}/{num_epochs}], Loss: {loss.item():.4f}")
return loss

Jlam 6ygemo gomaBaru mrpad 10 PyHKIIIT BTpaT 0e31M0CcepeaHbO B IIUKIII

HaB4aHH: (y Ko/l 3acTocoByeThes L1, miist Bukopuctanus L2 ciin

IIePEBU3HAYNTH 3MiHHY reg Ha 'l2"):

BanyckaeMoO HAaBUYAaHHA

reg = '11"

num epochs = 500

for epoch 1n range (num epochs):
optimilizer.step(fitness step)

print (f'"MSE Momesnm Ha ofOydawlel BEOOPpKE
{criterion (model (X train), y train)}')
print (£ '"MSE MomesM Ha TeCTOBOM BEOOPKE
{criterion (model (X test), y test)}')

26

Ak L1, Tak 1 L2 perynspu3aliii 3aCTOCOBYOThCS 15 OOMEKEHHS Baru
MOJIEJI1 3 METOK0 YHUKHYTH IMEPEHABYAHHS 1 IOCATTH HAWKPAIIOl y3arajibHIOKY01
3IaTHOCT1 MOJiEel. 3acTocyBaHHs L1-perynspu3zarliii 1HOI1 MOKE JaBaTh
KOPUCHUM ITOOIYHUM €(EKT, 1[0 BUKJIMKAE MPArHEHHS OQHOTO a00 OLIbIIE
BaroBux 3HaueHb 0, a 11e 03Hayae, 10 BIIMOBIAHUNM O3HAKa HEe BaKJIuBui. 1le 3
¢opmM ToTO, 110 HA3MBAKOTh ceiekilicro o3Hak (feature selection). Onnak,
BUKOpHCTaHHs L1-perynspu3zaliii He 3aBXKI1 MOKJIMBE, TOMY III0 BOHA MOXKE HE
MIAXOAUTH JJIs ACIKUX aJITOPUTMIB MAIlIMHHOIO HaBYaHHSI, 0COOJMBO JIJISI THX,

K1 BUKOPUCTOBYIOTh YMUCEJIbHI METOJIM OOYHCIIEHHS rpajieHTa. Ha BiaMiHY BiJ
L1, L2-perynsipuzaliisa npalroe 3 yciMa aJJropuTMaMyd MaIlIMHHOTO HAaBYaHHS, aJie
HE BUAJISE€ BAKIINBI O3HAKU. 3pemToro, BUOIp mixk L1 1 L2 perynsapusaiieto
3aJI€)KUTh B1JI KOHKPETHOI 3a/1a4l Ta METO/I1B HaBYaHHSI, TOMY BU3HAYCHHS
HaMOIBII MAXOSINO0I peryIsspu3alili MOKe BUMaraTu TECTyBaHHS METOAaMHU
Ipo0 Ta IIOMUJIOK.

27

