
Лабораторна робота №4

«Програмування віртуальної плати ESP32: моніторинг датчика та віддалене

керування виконавчим пристроєм через MQTT»

Мета роботи

1. Закріпити навички програмування мікроконтролера ESP32.

2. Опрацювати:

o читання аналогового/цифрового датчика;

o керування цифровим виходом (LED / «реле»);

o підключення до Wi-Fi;

o обмін даними через MQTT (publish/subscribe).

3. Реалізувати віддалене керування виконавчим пристроєм з зовнішнього

клієнта (на іншому комп’ютері/браузері).

Хід роботи:

1. Підготовка та реєстрація

1. Відкрити сайт-симулятор Wokwi:

https://wokwi.com wokwi.com

2. Зареєструватися або увійти (Sign up / Sign in).

3. Перевірити, що браузер дозволяє спливаючі вікна й не блокує JavaScript.

2. Створення проєкту ESP32 в Wokwi

1. На головній сторінці натиснути “Start new project”.

2. Обрати шаблон “ESP32” (ESP32 DevKit v1).

3. Відкриється редактор з файлом sketch.ino і віртуальною платою ESP32.

3. Додавання компонентів на схему

У правій частині (або знизу) Wokwi є панель компонентів.

1. Додати LED:

o Перетягнути компонент LED на поле схеми.

o Додати резистор (220–330 Ом) послідовно з LED.

o Підключити:

▪ катод LED (коротка ніжка) → GND плати;

▪ анод через резистор → пін GPIO 2 (у Wokwi його позначають

як D2 чи 2 — залежно від шаблону).

2. Додати потенціометр (імітація аналогового датчика):

o Перетягнути компонент Potentiometer.

o Крайні ніжки → 3.3V та GND ESP32.

o Середня ніжка (wiper) → GPIO 34 (ADC-вхід ESP32).

3. Перевірити підпис пінів на схемі:

o LED → GPIO 2

o Потенціометр → GPIO 34

https://wokwi.com/projects/374148034848049153?utm_source=chatgpt.com

Зробити скріншот схеми для звіту.

4. Підключення бібліотеки MQTT (PubSubClient)

1. У Wokwi відкрити вкладку “Library Manager” (зазвичай зліва або

зверху).

2. Знайти бібліотеку PubSubClient.wokwi.com

3. Натиснути “Add to project”.

4. Переконатися, що у списку файлів з’явився libraries.txt з записом про

PubSubClient.

https://wokwi.com/projects/379986008338388993?utm_source=chatgpt.com

5. Створення базового скетчу

В sketch.ino видалити все й вставити мінімальний каркас:

#include <WiFi.h>

#include <PubSubClient.h>

// ---------- Налаштування Wi-Fi (Wokwi) ----------

const char* ssid = "Wokwi-GUEST";

const char* password = ""; // порожній пароль

// ---------- Налаштування MQTT ----------

const char* mqttServer = "broker.emqx.io";

const int mqttPort = 1883;

// !!! ЗАМІНИТИ на свою групу/прізвище латиницею !!!

const char* topicSensor = "iot/kp-11/ivanov/sensor";

const char* topicCmd = "iot/kp-11/ivanov/cmd";

// ---------- Піни ----------

const int ledPin = 2; // GPIO2 - вбудований або зовнішній LED

const int sensorPin = 34; // потенціометр / сенсор

WiFiClient espClient;

PubSubClient client(espClient);

unsigned long lastPublish = 0;

// Прототипи

void reconnect();

void mqttCallback(char* topic, byte* payload, unsigned int length);

void setup() {

 Serial.begin(115200);

 delay(1000);

 pinMode(ledPin, OUTPUT);

 digitalWrite(ledPin, LOW);

 pinMode(sensorPin, INPUT);

 // --- Підключення до Wi-Fi ---

 Serial.print("Connecting to WiFi");

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("\nWiFi connected!");

 Serial.print("IP: ");

 Serial.println(WiFi.localIP());

 // --- Налаштування MQTT-клієнта ---

 client.setServer(mqttServer, mqttPort);

 client.setCallback(mqttCallback);

}

void loop() {

 if (!client.connected()) {

 reconnect();

 }

 client.loop();

 // тут далі буде публікація сенсора

}

6. Реалізувати підключення до MQTT

Додамо функцію reconnect() і callback для обробки команд.

6.1. Функція mqttCallback (обробка вхідних повідомлень)

void mqttCallback(char* topic, byte* payload, unsigned int length) {

 Serial.print("Message arrived [");

 Serial.print(topic);

 Serial.print("] ");

 String msg;

 for (unsigned int i = 0; i < length; i++) {

 char c = (char)payload[i];

 msg += c;

 }

 Serial.println(msg);

 // Дуже проста "обробка JSON":

 // якщо в повідомленні є "led":"on" -> вмикаємо,

 // якщо "led":"off" -> вимикаємо

 if (msg.indexOf("\"led\"") != -1) {

 if (msg.indexOf("on") != -1) {

 digitalWrite(ledPin, HIGH);

 Serial.println("LED -> ON (by remote command)");

 } else if (msg.indexOf("off") != -1) {

 digitalWrite(ledPin, LOW);

 Serial.println("LED -> OFF (by remote command)");

 }

 }

}

6.2. Функція reconnect (відновлення з’єднання з брокером)

void reconnect() {

 // Цикл, поки не під’єднаємось

 while (!client.connected()) {

 Serial.print("Attempting MQTT connection... ");

 String clientId = "esp32-";

 clientId += String(random(0xffff), HEX);

 // Спроба підключення без логіна/пароля

 if (client.connect(clientId.c_str())) {

 Serial.println("connected!");

 // Після підключення підписуємося на топік команд

 client.subscribe(topicCmd);

 Serial.print("Subscribed to: ");

 Serial.println(topicCmd);

 } else {

 Serial.print("failed, rc=");

 Serial.print(client.state());

 Serial.println(" try again in 3 seconds");

 delay(3000);

 }

 }

}

7. Додавання публікації даних сенсора

Завдання: раз на 5 секунд читати значення потенціометра і надсилати в MQTT

у форматі JSON.

Додайте в loop() після client.loop():

void loop() {

 if (!client.connected()) {

 reconnect();

 }

 client.loop();

 unsigned long now = millis();

 if (now - lastPublish > 5000) { // кожні 5 секунд

 lastPublish = now;

 int raw = analogRead(sensorPin); // 0..4095 на ESP32

 // Перетворимо в "відсотки 0..100"

 float value = raw * 100.0 / 4095.0;

 String payload = "{";

 payload += "\"value\":";

 payload += value;

 payload += "}";

 Serial.print("Publishing to ");

 Serial.print(topicSensor);

 Serial.print(": ");

 Serial.println(payload);

 client.publish(topicSensor, payload.c_str());

 }

}

Тепер ESP32:

читає «сенсор» (потенціометр);

надсилає дані в MQTT кожні 5 секунд.

8. Перевірка роботи плати в симуляторі

1. Натиснути “Play/Run” у Wokwi (кнопка ► “Start simulation”).

2. Відкрити Serial Monitor (іконка монітора).

3. Переконатися, що:

o з’являються повідомлення типу WiFi connected, Attempting MQTT

connection... connected!;

o кажні 5 секунд друкується рядок Publishing to ... { "value": ... }.

Якщо помилка підключення до MQTT — перевірити mqttServer, mqttPort і

наявність інтернету.

9. Налаштування онлайн MQTT-клієнта (браузер)

Тепер покажемо віддалене керування: з браузера будемо надсилати команди,

ESP32 — реагувати.

9.1. Відкрити EMQX Online MQTT Client

1. У новій вкладці браузера відкрити:

https://www.emqx.io/online-mqtt-client

2. Натиснути “New Connection”.

9.2. Заповнити параметри з’єднання

Орієнтовні значення (може трохи відрізнятися в інтерфейсі, але суть та сама):

• Name: BrowserClient (будь-яка назва).

• Client ID: browser-ivanov (щось унікальне).

• Host: wss://broker.emqx.io:8084/mqtt

o broker.emqx.io — адреса брокера;

o 8084 — порт WebSocket;

o /mqtt — шлях WebSocket для EMQX.www.emqx.com+1

• Username / Password: залишити порожніми.

• Інші параметри (Keep Alive, Clean Session) — за замовчуванням.

Натиснути “Connect”.

Статус має змінитися на Connected.

10. Перегляд даних сенсора з плати

1. У вкладці MQTT-клієнта натиснути “New Subscription” / “Subscribe”.

https://www.emqx.com/en/mqtt-dashboard?utm_source=chatgpt.com

2. У поле Topic вписати свій топік сенсора, напр.:

iot/kp-11/ivanov/sensor

3. QoS → залишити 0, натиснути “Confirm/Subscribe”.

Через кілька секунд ви повинні бачити повідомлення, які ESP32 публікує кожні

5 секунд:

{"value": 42.3}

Повертаючись у Wokwi, покрутіть повзунок потенціометра — значення value у

браузерному клієнті мають змінюватися.

11. Віддалене керування LED з браузера

Тепер перевіряємо топік команд.

1. У MQTT-клієнті у поле Topic вписати:

iot/kp-11/ivanov/cmd

2. Тип повідомлення — JSON (якщо є опція) або просто текст.

3. У поле Payload ввести, наприклад:

{"led":"on"}

Натиснути “Publish”.

У серійному моніторі Wokwi з’явиться:

Message arrived [iot/kp-11/ivanov/cmd] {"led":"on"}

LED -> ON (by remote command)

На платі ESP32 (віртуальній) LED повинен загорітись.

Аналогічно надішліть:

{"led":"off"}

LED має погаснути.

Це і є керування на відстані: ви зі стороннього клієнта (браузер) надсилаєте

команду на MQTT-брокер, а плата ESP32, підписана на топік, її отримує й

змінює стан виходу.

12. Експерименти для закріплення

1. Змінити поріг увімкнення LED по сенсору:

o додати в код логіку: якщо value > 70, LED включається в

автоматичному режимі.

2. Зробити два режими роботи:

o mode = "auto" — плата сама керує LED по сенсору;

o mode = "manual" — LED тільки по командам on/off.

o режим можна змінювати через MQTT-команду:

o {"mode":"auto"}

o {"mode":"manual"}

3. Додати гістерезис:

o увімкнення при value > 70,

o вимкнення при value < 60,

щоб LED не «миготів» біля порогу.

