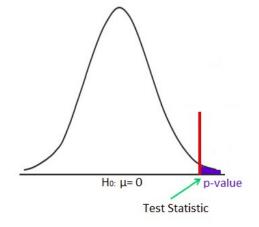
6. DATA ANALYSIS

6.1. Hypothesis Testing

- Your ideas have to be formulated in to a <u>clear</u> question.
- Fig. 1. It is not <u>acceptable</u> / <u>efficient</u> to collect data and then fish around for low <u>p-values</u> 1.
- > Start with *well-formulated* question before running an exp.



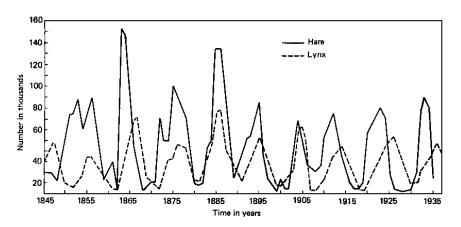
¹ helps to determine the <u>significance</u> of your <u>results</u>: a small p-value (≤ 0.05) indicates strong evidence against the **null hypothesis**, so you <u>reject</u> the null hypothesis; a large p-value (> 0.05) indicates weak evidence against the **null hypothesis**, so you fail to <u>reject</u> the null hypothesis;

If the **p-value** < α , then this represents a statistically significant **p-value**: we can **reject** the claimed hypothesis.

If the **p-value** $\geq \alpha$, we cannot **reject** the claimed hypothesis.

- > A <u>clear</u> question will stimulate relevant exp. <u>manipulations</u> and <u>statistical</u> analyses ¹.
- > Statistics will allow you to *evaluate* whether the differences *caused* by you *treatments* are likely to be *real* one **or** are likely to reflect *random* noise.

Photo source: Rudolfo's Usenet Animal Pictures Gallery (link no longer exists)



Population cycles in Lynx & its prey (MacLulich after Elton 1925) https://www.mun.ca/biology

¹ e. g., you observed that the population of the **species A** (lynx) reduces the population size of **species B** (hare) $/h\epsilon$:/

You testable working *hypothesis* is that *population* of hare will be lower in the presence of lynx then in the absence of lynx.

How to study? You can conduct a manipulation, *removing* lynx from half of you plots and keeping the other half as unmanipulated control.

By measuring difference in hare population you will find that you null hypothesis can be rejected.

6.2. Statistical & biological significance

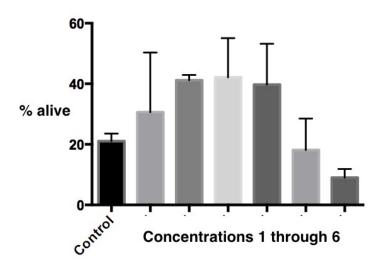
- ► **SS** is indicated by a *probability* level ¹.
- SS at p < 0.05 means that the null hypothesis $(H_0)^2$ is *rejected*.
- There is a 95% *chance* that there is a difference between these two conditions.
- **BS** is indicated by the *size* of the effect.

¹ not necessarily *large* or *important* when you perform a *hypothesis* test (the validity of a claim that is made about something) in statistics *p*-value (probability level) helps determine the *significance* of your results.

The <u>p-value</u> is a number between 0 and 1 and interpreted in the following way: \leq 0.05 - strong evidence against the H₀, so you <u>reject</u> the H₀; > 0.05 - weak evidence against the H₀, so you fail to reject the H₀; very close to 0.05 - are considered to be marginal (could go either way).

² that there is no difference between the **treatment** and **control**.

- Very <u>small</u> differences can be SS but not produce <u>consequences</u> that are important.
- In fact, we want to know if effects are "**BS**", although we often use "**SS**".
- We need to report both, if the difference is **SS** and the effect \underline{size}^{1} .

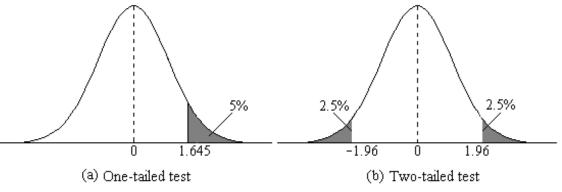


A number of cells with six different concentrations, n=3 https://stats.stackexchange.com/questions

 $^{^{1}}$ e.g. with a *histogram* (mean±SE) or by reporting that hares were 30% more numerous in plots without lynx.

6.3. How to evaluate statistical significance?

- > Steps to assess **SS**:
- · define your **hypotheses** ¹;
- set the significance level (a-level) ²;
- decide to use a one-tailed or two-tailed **test** ³;
- determine sample **size** 4;
- · calculate **SD** ⁵;



https://towardsdatascience.com/one-tailed-or-two-tailed-test-that-is-the-question-1283387f631c

- ¹ i.e. the question you want to **answer** and stating your **hypothesis**;
- ² the **threshold** that you set to determine significance: if your **p-value** is \leq to the set significance level, the data is considered SS;
- ³ a one-tailed (однобічний, is more powerful): testing for the possibility of the relationship in <u>one</u> direction, e.g. a new variety "A" you think is "more" productive than already existing variety "B"; two-tailed test: you are testing for the possibility of the relationship in <u>both</u> directions, e.g. a new variety "A" you think is "more" or "less" productive than already existing variety "B";
- $^{\scriptscriptstyle 4}$ practical part question, where 0.01 is confidence interval for $\mu;$

⁵ the formula is SD = $\sqrt{\sum((x_i-\mu)^2/(n-1))}$.

$$1.96 \pm \sqrt{\frac{o^2}{n}} \le 0.10$$

- · calculate the **variance** between 2 sample groups ¹;
- · calculate the **t-score** ²;
- · determine the **df** ³;
- · use a **t-table** to evaluate significance ⁴.

E.g. if **t-score** = 2.61 gives $\underline{p\text{-}value}$ between 0.01 and 0.025, which is \leq 0.05, our data is **SS**, we reject the null hypothesis.

¹ the formula for variance is $s_d = \sqrt{((s_1/N_1) + (s_2/N_2))}$;

² t-scores allow you to perform a t-test that lets you calculate the probability of two groups being significantly different from each other: $t=(\mu_1-\mu_2)/s_a$;

 $^{^{3}}$ e.g. if we have 5 samples in each of two groups, df=8 i.e. ((5+5)-2=8);

⁴ in a statistics book or online.

6.4. How to calculate effect size?

- E.g. you studied how removal of large herbivores (goats) from some large scale plot *effect* the *population* of small herbivores (grasshopper).
- You found that in those without <u>mammalian</u> herbivores <u>grasshopper</u> population was <u>higher</u> and **SS** (**p=0.014**).
- > What was the *size* of the effect?
- > **One way**: the *absolute difference* (**AD**) in grasshoppers between two treatments:

$$| mean_{tretm.(no goats)} - mean_{ctrl.} | = AD$$

$$|14.8 - 6.75| = 8.05$$

Another way: AD is not as useful as <u>relative difference</u> (RD):

$$| \text{mean}_{\text{tretm.(no goats)}} - \text{mean}_{\text{ctrl.}} | / \text{mean}_{\text{ctrl.}} = \text{RD}$$

$$| 14.8 - 6.75 | / 6.75 | = 119 \%$$

By removing goats population of grasshoppers *increased* by **119** %.

Third way: to report standardized effect <u>sizes</u> scaled by a measure of the <u>variance</u> or <u>noise</u> involved in measuring them 1,2 :

| mean $_{
m tretm.(no\ goats)}$ - mean $_{
m ctrl.}$ | / SD $_{
m tretm.(no\ goats)}$ + $_{
m ctrl.}$

i.e.
$$(14.8 - 6.75) / 4.43 = 1.82$$
.

¹ the difference between the means divided by their standard deviation, SD;

² gives **unitless** (having no units of measurement) **value:** help evaluate how big or small an effect is when the units of measurement aren't intuitive (інтуїтивно зрозумілий). E.g. 2.3 ° C is a meaningful difference while a 2.3-point difference on an anxiety scale that runs from 7 to 49 is not so meaningful difference.

- > Such effect sizes are *unit-less* and allows us to compare it with the effects found in other studies.
- > No two populations are *exactly* identical, just as no two people are.
- By testing a \mathbf{H}_0^{-1} we are not calculating the *probability* that they are *identical*, but rater the *probability* that we can detect a *difference* between them.
- > We are saying that two populations are:
- truly different if p=0.049;
- not different if **p=0.051**

¹ two populations are the same

> These numbers are a bit <u>arbitrary</u>, since in both cases we will be wrong appr. 5 times of 100.

Fig. **p=0.001** we can be more *confident* that the result was not caused by chance than if e.g. **p=0.05**.

> It is good to report <u>calculated</u> value rather than reporting p > or < than 0.05.

6.5. Alternative hypotheses

Many ecol. <u>hypotheses</u> are not simply \underline{true} or \underline{false} ¹.

Null Hypothesis

Alternative Hypothesis

https://keydifferences.com/

- How can we study this *phenomenon*?
- > Instead of rejecting H_0 let us think what is the <u>size</u> of the effect caused by <u>competition</u>?
- Even if *competition* is found to be important, *predation* may also be important.
- By developing a set of *alternatives*, you do not become "attached" to the hypotheses you selected initially.

¹ e.g., we want to understand the role of <u>competition</u> in communities structuring. We can not conduct a simple experiment (it can be *predation*, *parasitism disturbance* etc.).

- Fig. If you start with a <u>list</u> of H_A , you likely will end up with something <u>interesting</u>.
- If you are *focusing* on only a single *hypothesis*, you will have to say *something* only if your results come out one particular way.
- \rightarrow How to generate H_{Λ} ?
- Once you have identified a *pattern* that is interesting to you *consider* the other possible *factors* as alternatives that could also produce this pattern¹.

```
abiotic factors (e.g. precipitation, temperature etc.);
predators, parasitism, disease;
mating factors (e.g. sexual selection, nest-site availability);
microhabitatats (shelter from abiotic conditions);
disturbance (human or natural causes);
genetic or developmental influence etc.
```

> Should you test all of your *alternatives*?

No, you should not.

Although *getting* them all down on the paper for a *consideration* is a first step.

6.6. Negative results

- Assume, we <u>fail</u> to <u>reject</u> a H_0^{-1} , should we <u>conclude</u> that two populations really are the <u>same</u>?
- > No.
- \rightarrow What can we <u>say</u>?
- > Only that we *failed* to show *difference* or *effect* we have hypothesized.
- > Why?

 1 i.e. p > 0.05

Reasons:

- statistical tests give us far *more* power to *reject* hypotheses than to *accept* "negative" results (1).
- · in most cases we have very <u>weak</u> power to <u>evaluate</u> whether two populations are <u>similar</u> (2).
- · we rarely use *relevant statistics* to address this issue (3).
- · many papers with "negative" results in ecology never get published (4).
- · our ability to \underline{accept} a negative result also depend on the \underline{effect} \underline{size} we are looking for ¹.

```
1 e.g., it is generally accepted that:
a small effect size as a difference of 0.10 (10%) or <;
a large effect size as a difference of 0.40 (40%) or >.
```

- How to interpret results?
- If we expect a <u>really</u> large effect, we can be more <u>confident</u> that one truly didn't exist than if we were only <u>expecting</u> a small effect.

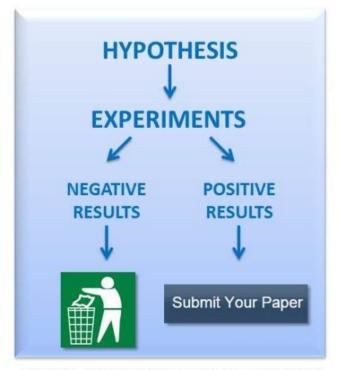


Figure 1: The most common approach taken by journals, in which only those experiments yielding positive results end up as publication material.

Figure 2: A more neutral approach, in which all results are published, as long as they are generated by well-carried out experiments based on sound hypotheses.

https://www.elsevier.com/

6.7. The numbers of data and test statistics

- > The numbers of the data itself is not very *meaningful*, because it's not *standardized*.
- You can obtain a <u>lot</u> of data points, but you have to extract <u>meaningful</u> things from it.
- Why test <u>statistics</u> ¹ is important?
- It shows how *far* or *close* actual results are from claimed data in terms of *standard errors* (**SE**) of the sample mean ².
- > The *sample size* is another variable we need to calculate the *p-value* ³.

¹ a statistic used in **statistical** hypothesis **testing**.

² depends on SD and the sample size (n): SE = SD/ \sqrt{n} : SE is a measure of the <u>dispersion</u> of sample <u>means</u> around the <u>population</u> <u>mean</u>.

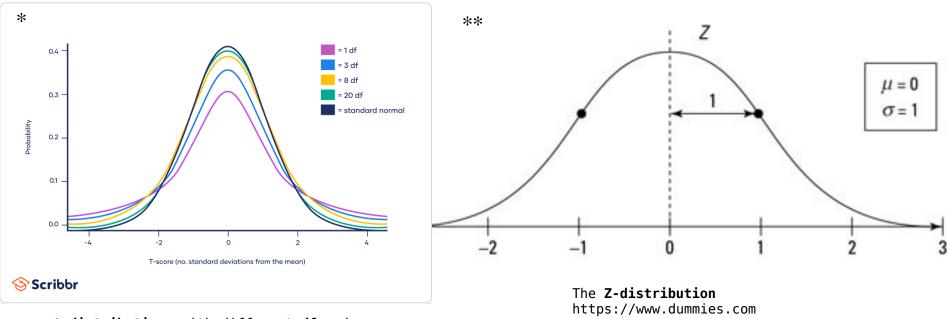
So, if we want to say how <u>widely scattered</u> some measurements are, we use the **SD**; if we want to indicate the <u>uncertainty</u> around the estimate of the mean measurement, we use **SE**.

³ important because it determines whether we use the standard normal <u>distribution</u> (Z-distribution) to look up the <u>p-value</u>, or we use the <u>t-distribution</u> to look up the <u>p-value</u>. When you know the population **SD** you should use the **z-test**, when you estimate the sample **SD** you should use the **t-test**. Usually, we don't have the population **SD**, so we use the t-test.

If the sample size is < 30 (n < 30) ¹, we use the <u>t-distribution</u>* to calculate the <u>p-value</u>.

We calculate the **df** (df=n-1) and use it to calculate the *p-value*.

If the sample is > 30 (n > 30)², we use the <u>Z-distribution</u>** to calculate the <u>p-value</u>.



t-distributions with different df and
the standard normal distribution
http://onlinestatbook.com

¹ this is a <u>small</u> <u>sample</u> <u>size</u>; * Student's probability distribution that is used to estimate population parameters when the sample size is <u>small</u> and/or when the population <u>variance</u> is <u>unknown</u>;

² this is a *large* sample *size;* ** is a normal distribution with mean zero and standard deviation 1.