
ПРАКТИЧНЕ ЗАНЯТТЯ № 1 

 РОБАСТНІ МЕТОДИ ОБРОБКИ РЕЗУЛЬТАТІВ ВИМІРЮВАНЬ 

 

Мета роботи: 

Ознайомиться з робастними методами, слабо залежними від наявності  викидів або 

промахів і відхилення розподілу від гаусівського. 

Вирішити  задачу пошуку оцінки середнього по випадковій вибірці робастним 

методом. за допомогою  програми MS Excel. 

 

1.1. Основні теоретичні відомості         

Класичні методи математичної статистики розроблені для тих випадків, коли 

експериментальні  дані задовольняють строгим статистичним моделям і є оптимальними 

для цих моделей. Проте більшість з них чутливо до наявності  викидів або промахів, до 

відхилень розподілу від гаусівського тощо. В практичних задачах строгі моделі нерідко 

порушуються і тому  бажано використовувати такі  методи,  які  слабо  залежать  від  

порушення введених припущень,  однак  дають  достатньо високу точність оцінки. Такі 

методи, названі робастними або  стійкими і активно розробляються в сучасній  статистиці 

та все більш широко використовуються на практиці. Так, наприклад, в ГОСТ ІСО 5725-5-

2002 приведено застосування робастних методів для аналізу результатів експериментів. 

Робастні оцінки будуються так, щоб їх властивості залишалися добрими навіть у тому 

випадку, коли дійсний розподіл експериментальних даних відрізняється від 

передбачуваного. Так, для багатьох наборів даних реалістичнішою є не строга модель 

розподілу Гауса, а розподіли з “важчими” хвостами (коли ймовірність великих відхилень  

від середнього значення суттєво більша, ніж при розподілі Гауса).  Найбільш поширеною 

серед таких моделей є модель засмічення  (або модель грубих помилок): розподіл вибірки 

представляють у вигляді суміші основного розподілу Гауса  (х) з іншим розподілом h(x): 

 p(x)=(1-)(х)+h(x).  (1.1) 

Розподіл h(x) може бути або розподілом  Гауса  із значно більшою дисперсією, ніж 

)(x  (часто при дослідженні оцінок приймають відношення СКВ h/ рівним 3 або 10), 

або h(x) відрізняється від розподілу Гауса і має затягнуті хвости.  

Переходити до робастного оцінювання слід при розподілі вибірки з довшими хвостами, 

ніж у розподілу Гауса. 

Робастні оцінки повинні задовольняти двом основним вимогам:                                                          

– мало поступатися в ефективності оптимальним оцінкам  при виконанні основної 

моделі, коли розподіл  дійсно є гаусовським; 

– залишатися досить добрими при відхиленнях від основної моделі, коли розподіл 

відмінний від гаусівського. 

Застосування робастних методів розглянемо на прикладі пошуку оцінки середнього по 

випадковій вибірці x1 ..., xn,  тобто стосовно обробки даних при прямих вимірюваннях з 

багатократними спостереженнями. Найчастіше використовується класична оцінка – 

середнє арифметичне результатів спостережень. Ця оцінка є якнайкращою при розподілі 

Гауса. Проте при відхиленнях від цього розподілу або при наявності викидів її властивості 

різко погіршуються: оцінка втрачає ефективність і сильно залежить від викидів.  

Найбільш розробленим методом побудови робастних оцінок є узагальнений метод 

максимальної правдоподібності, в якому побудова оцінки виходить з умови 
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де а – математичне очікування випадкової величини. 

  



При цьому вагова функція (x)  вибирається так, щоб при великих  x  вона зростала 

повільніше, ніж квадратична функція x2, а при малих x  була близька до x2. Тому М-

оцінка, визначена умовою (2.2), слабко залежить від викидів (промахів) і  хвостів, що 

впливають на розподіл, але при розподілі  Гауса  вибірка  близька  до середнього .x   

М-оцінки зазвичай не виражаються в явному вигляді, навіть при  оцінці середнього. В 

цьому випадку вони є рішенням рівняння 
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де  (x) = ),(x  для вирішення цього рівняння зазвичай використовують ітераційні 

методи.  

Найбільш поширеними на практиці є М-оцінки Хьюбера (н), Хампеля (на), Андрюса 

(А ) і Тьюки (T ); відповідні похідні вагових функцій н, на, А  і T (H, HA, A і  T ) 

наведені в таблиці. 2.1.  

У таблиці 2.1 аргумент вагової функції масштабують за допомогою залежності 
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де xi – елемент впорядкованої вибірки; 

al – оцінка параметра зсуву, зазвичай беруть за початковий параметр зсуву медіану; 

S – початкова оцінка параметра масштабу (стійка оцінка СКВ).  

 

Таблиця 1.1 

Оцінка 

 

Вагова функція 

 

Значення  
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Значення медіани, залежно від парної або непарної кількості елементів вибірки, 

визначається згідно виразу: 
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Значення початкової оцінки параметра масштабу рекомендується  визначати з 

наступного виразу:  

  )(483,1 ii xmedxmedS  .  (1.6) 



Найбільший інтерес представляє оцінка Хьюбера, для якої функція н  в області x  с є 

квадратичною, тобто відповідає розподілу Гауса, а в області x > с — лінійною, тобто 

відповідає експоненціальному розподілу, який має хвости, що істотно «обважнюють» 

вибірку у порівнянні з розподілом Гауса. Оцінка Хьюбера є рішенням мінімаксної задачі: 

максимальна асимптотична дисперсія оцінки на класі засмічених розподілів Гауса для неї 

досягає мінімуму. Вона досить стійка до відхилень від розподілу Гауса.  

Для вирішення рівняння (1.6), що визначає М-оцінку, можна застосувати ітераційну 

схему  Гауса – Ньютона: 
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Виконавши один крок ітераційної процедури ми можемо зупинитися на однокроковій 

М-оцінці, яка дає цілком задовільні результати при  використанні функції Хьюбера. 

Однокрокова М-оцінка з обрахуванням  зсуву і масштабу матиме вигляд:  
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В даний частині робастний підхід перетворився в добре розроблену область 

статистики. Запропоновано численні і різноманітні оцінки, які поєднують високу 

ефективність при використанні основних моделей з достатньою стійкістю по відношенню 

до відхилень початкових даних від цих моделей. Для багатьох оцінок досліджено точність 

(стосовно до різних моделей) і розроблено апарат статистичних висновків.  

Головна мета використання робастних методів – виключити вплив грубих похибок і 

промахів, до яких чутливі класичні методи. Однак, в класичній статистиці  також наявні 

методи видалення промахів. Для цього можна використовувати двоступінчату процедуру: 

– виділити і виключити грубі похибки і промахи; 

– застосувати до «відредагованих» даних, що залишилися, класичну процедуру 

оцінювання. 

Корисно зіставити приведену двоступінчату процедуру з одним із робастних методів. 

Дослідження показують, що кращою є, як правило, робастна процедура. Це обумовлено 

такими причинами:  

1) при використанні двоступінчатої процедури не завжди вдається чітко розмежувати 

етапи, особливо для складних задач; наприклад, при побудові емпіричних   залежностей   

грубі   похибки важко виявити на основі класичних оцінок; 

2) навіть ретельно «відредагована» вибірка, як правило,  матиме розподіл,   що 

відрізняється від гауса;  тому застосування класичних методів   все-таки   залишається   не 

цілком обґрунтованим; 

3) більшість процедур виділення і виключення грубих похибок поступаються в 

ефективності робастним процедурам; крім того, вони можуть бути досить трудомісткими. 

Тому переважними в більшості випадків є робастні процедури, оскільки вони 

допускають плавний перехід від повної вибірки до суттєвого скорочення даних з 

урахуванням властивостей конкретної вибірки. Ця перевага стає особливо наочною при 

переході до складніших задач, наприклад до побудові емпіричних залежностей. Таким 

чином, необхідно якнайширше використовувати робастні методи в вимірювальних 

задачах, для яких особливо важлива властивість стійкості результатів. 

У тих випадках, коли по тих або інших причинах доцільно орієнтуватися на класичні 

методи, рекомендується паралельно застосовувати один з простих робастних методів; 

виконати, наприклад, однокрокову М-оцінку для контролю результатів і виявлення 

відхилень від моделі. Якщо немає суттєвої розбіжності між двома результатами, то можна 

зробити звичайні статистичні висновки на основі класичного підходу. Інакше необхідно 

ретельніше проаналізувати початкові дані та або виявити і відкинути промахи (а потім 

знову застосувати класичну процедуру), або орієнтуватися на один з точніших робастних 



методів, для яких є оцінки похибок. Така процедура забезпечить достовірність отриманих 

висновків і дозволить уникнути грубих помилок. 

 

1.2. Порядок виконання практичної роботи 

1. Знайти однокрокову М-оцінку математичного очікування випадкової величини по 

методу Хьюбера і оцінку середньоарифметичного для контрольної вибірки у вигляді 

моделі засмічення у відповідності з варіантом завдання по таблиці 1.2.  

2. Зробіть висновок по отриманих результатах.  

 

1.3. Контрольні запитання 

1. Які переваги робастних методів в порівнянні з класичними методами математичної 

статистики? 

2. Назвіть найбільш поширені робастні оцінки. 

3. Як визначається медіана вибірки? 

4. Як визначаються початкова оцінка масштабу? 

5. Як знаходяться М-оцінки? 

6. Як визначається однокрокова М-оцінка? 

7. У чому доцільність зіставлення оцінок, отриманих класичним методом, з робастною 

оцінкою? 



                                                                                                                                                               Таблиця 1.2 

   
 


