TecTtyBaHHA, Bepudikaudifa Ta Banigauisa nporpaMmHoro 3abesneyeHHs

Jlekuiga 5

Tema: ABTOMaTu3auia TeCTyBaHHS

XUTOMUPCDbKA JlekTOop: acuCTeHT Kadeapn KOMM IOTEPHUX
/' NMOJIITEXHIKA HayK YkpalHeub Mukona OnekcaHgpoBuY

OEPXABHNW YHIBEPCUTET

4



[TuTaHHA nekuil

1. Uini Ta 3aBOoaHHA aBTOMaTM3auUil TecTyBaHHS. PiBHi
aBTOMaTM3aLUil TeCTyBaHHA.

2. OuiHka gouinibHOCTIi aBToMaTu3aduil TectyBaHHA. XKUTTEBUN
LMK aBTOMAaTK3aLil TeCTyBaHHA.

3. IHCTpyMeHTn Ta PpenmMBOpPKM And aBToMaTn3adil
TeCTyBaHH4.



Llini Ta 3aBgaHHS aBTOMaTM3aLUil TECTYBaHHS

ABTOMaTU30BaHe TeCTyBaHHS NMporpamMHoro 3abesne4yeHHs — YacTuHa
npoLuecy TeCTyBaHHA Ha eTani KOHTPO/IO AKOCTI B npoueci po3pooku
nporpamMHoOro 3abesneyvyeHHa. BOHO BUKOPUCTOBYE NporpamHi 3acobu ans
BMKOHAHHA TECTIB | MepeBipKN pe3y/bTaTiB BUKOHAHHS, WO AonoMarae
CKOPOTUTM Yac TECTYBaAHHSA i CNPOCTUTN NMOro npoLec.

MerTa:
® 3MEeHLEHHA Yacy i BApTOCTi perpeciiHOro TectyBaHH4.
e [ligBMLWEHHA NOBTOPIOBAHOCTI M TOYHOCTI TECTIB.
e MOoXNUBICTb LUBNAOKOIO 3aMyCcKy BEUKOI KillbKOCTi TECTIB.

Buan aBToMaTn3auil TeCTyBaHHS:
e ABTOMaTtM3auia tectyBaHHA koay (Code-driven testing)

e ABTOMaTM3aUiA TeCTyBaHHSA rpadivyHOro iHTepgency Kopmctysaya
(Graphical user interface testing)
e ABTomaTtm3auia TectyBaHHA API



Llini Ta 3aBgaHHA aBTOMaTKU3aLil TeCTyBaHHS.

—_—
.

Hw

Llini aBTomaTusauii
CKOpOYEHHA Yacy Ha BUKOHAHHSA TeCTiB
CTabinbHOCTI Ta

3abe3neyeHHda

NOBTOPIOBAHOCTI NepPeBIpPOK

Po3LlWMpeHHA NOKPUTTS TecTaMm

IHTerpauis

B

npouec

po3po6ku (CI/CD)

Ontumisauida
NepCrneKTuBI

BUTpaT

y

6e3nepepBHOT

[OBrOCTPOKOBIM

Hw

o o

3aBAaHHA aBTOMaTMU3aLUIl
ABTOoMmaTtu3auis PYTUHHUX i 4yacTo
NOBTOPIOBAHUX CLIEHApPIIB
3abe3neyeHHs LWBMAKOrO 3BOPOTHOro 3B’
A3KY A/19 PO3POOHUKIB
MigTpumka cTabifibHOT perpecii
MogenioBaHH4A HaBaHTaXEHHS i
performance-tecTiB
YHithikauia TectoBux cueHapiiB
3MEeHLUEHHS Py4HOI PYTUHU onsa
TeCTyBa/IbHUKIB




Llini Ta 3aBgaHHA aBTOMaTu3aLil TeCTyBaHHSA

YoMy aBTOMaTM3aLifa BaX/uBa:

PyuyHe TecTyBaHHSA YyCiX pob6o4Mx MpoueciB, YyCiX MoniB, yCiX HeratTMBHUX cLeHapilB
BMMarae 6araTto 4yacy Ta rpoLuei.

ABTOMaTM3aLia He BMMArae BTPyYaHHS NOAVHU. B MoxeTe 3anyCTutM aBTOMaTUYHWUI
Tect 6e3 Harnagy (Hanpuknag BHoOI).

ABTOMaTM3aLUia 36iNblIye WBUAKICTb BUKOHAHHSA TECTY.

ABTOMaTK3aUia gonomMarae 306inbWwnTn NOKpuUTTa Tectamm (Test Coverage).

Py4He TecTyBaHHA MOXe OyTU HYOHUM a, OTXe, BeAe A0 BUMNaaKOBUX MOMU/IOK.

[oBoni cknagHo NpoTecTyBaTn MySIbTUMOBHI 3aCTOCYHKN BPYUYHY.



PiBHI aBTOMaTKn3aLil TeCTyBaHH4A

Then build
on that
Foundation Manual
4 Testing
Automated
GUI Testing
Automated Functional
Testing of the Application
Automated Functional Testing
of each Service, Method & Function
Automated API & Interface Testing
Start with
Foundational Automated Unit Testing
Tests

<+ Number of Tests

More Complex,
Harder to Maintain,
Longer-running,
More false negatives
A

Simpler,
Easier to Maintain,
Faster-running,
Few false
negatives



PiBHI aBTOMaTKn3aLil TeCTyBaHH4A

Test Driven Development — Lie npouec HanMcaHH4A
Ko4y, AKWUN BKIKOYAE HANMCAHHA aBTOMATNU30BaHOIro
TECT-KEWCY Ha piBHi unit-tectyBaHHA, AKNIA He
NPOXOAUTb, MOTIM HAaNMMCAHHA AOCTAaTHLOI KiTbKOCTI KOoAy
0119 YCMiLWHOro NPOXOOXKEHHA TECTY, peakTOPUHT AK
TEeCTOBOro Kofy, Tak i npoaakLUH-Ko4y, a NoTiM
NOBTOPEHHS 3 iHWMM HOBUM TECTOBUM BUMNAAKY.

Write a
failing test

TDD

Make the
test pass




PiBHI aBTOMaTM3aLil TeCTyBaHH4A

ABTOoMaTu3auia tectyBaHHA APl — Le npouec BUKOPUCTAHHS
NporpaMHOro 3abesneyvyeHHd AN aBTOMaTUYHOT NEPEBIPKN NPOrpamMHNX
iHTepdencis gogatkiB (APIl). 3aMiCTb py4HOro TeCTyBaHHSA, CTBOPIOIOTHCA
CKpPUNTKU, SKi HagcunaTb 3annuTn o API, oTpuMytoTb Bignoeigi ta API
NOPIBHIOKOTL TX 3 OYiKyBaHMUMMK pe3yribTatamu. Lle 4o3BONSE nepeBipuUtn calling...
PyHKLUIOHaNbHICTb, HAAINHICTb, NPOAYKTUBHICTbL Ta 6e3MneKy Ha PiBHiI
Gi3HEeC-M0rikun, Wwe 0o CTBOPEHHS rpadivyHOro iHTepdency.

ullairtel & 12:55 AM

Knio4yoBi nepeBarun aBTomatmsadii tTectyBaHHA API.
e PaHHe BUABNeHHA gedekTiB
e [ligBMWEHHA €PEKTUBHOCTI Ta LUBUAOKOCTI P
o [lokpalleHe TeCcToBE MOKPUTTH RorminiiT L
e |HTerpauia 3 CI/CD
e He3anexHicTb Big MOBM Ta naaTopmun
OCHOBHI acnekTy, WO nepeBipsTbCs: P
o DyHKUIOHANbBHICTb
e be3neka Degline
e [lpoayKTMBHICTb
e HapivHictb




PiBHI aBTOMaTM3aLil TeCTyBaHHS

ABTomaTtusauifa Ul TectyBaHHA — Lie NpoLEC BUKOPUCTAHHA
crneuianisoBaHUX iIHCTPYMEHTIB 4719 aBTOMATUYHOI NepeBIipKU
yHKLIOHANbHOCTEN LWNAXOM iMiTauil gin peanbHOro
KopucTtyBaya 3 rpadivyHmm iHTepdencom gogaTky (Bebcanty,
MOOGiNbHOro goaatky). MNporpamHi CKpunTn aBTOMaTtU4YHO
nepeBipsat0Tb, UM BCi BisyanbHi €eN1eMeHTH, TaKi 9K KHOMKMW,

MEeH0, POpPMM Ta NOCUNAHHS, BUIAAAIOTb | (PYHKLIOHYOTb
KOPEKTHO.

]
MY Ul TESTS WHEN\T




PiBHI aBTOMaTM3aLil TeCTyBaHH4A

Performance-tectyBaHHS (a60 TecTyBaHHSA NPOAYKTUBHOCTI) — Lie npouec BU3HAYEHHSA
WBUAKOCTI, HAAINHOCTI, MacLUTAaBoBAHOCTI Ta CTAabiNbHOCTI CUCTEMM Mia NEBHUM
HaBaHTaXXeHHAM. ABTOMaTM3aUia LbOro npouecy 403BOMSE CUMY/IOBATM TUCAYI OQHOYACHUX
KOPWUCTyBauiB Ta 30MpaTu TOYHI METPUKMU, LLO HEMOX/TMBO 3POOUTN BPYUHY.

OcHoBHa MeTa: 3HanTK Ta YCYyHyTn "By3bKi Micua" B cuctemi, wob 3abesneyntu 1i ctabinbHy
POBOTY Ta MNO3UTUBHMUI KOPUCTYBaLbKWUA AOCBIA HaBiTb NPU NiIKOBUX HABaHTaXEHHAX.

OcHoBHi BUau Performance-tecrTis:
e HaBaHTaxyBanbHe TecTyBaHHA (Load Testing)
e Crpec-tectyBaHHS (Stress Testing)
e TectyBaHHA Ha BuTpuBanictb (Endurance/Soak Testing)
e TecTtyBaHHA MacwTaboBaHoCTi (Scalability Testing)



OuiHKa gouinbHOCTI aBTOMAaTU3aLlil TECTYBaHHS

BusHauveHHs TOro, ki Tectu nigxoaatb 4719 PyYHOro ym
aBTOMaTMU30BaHOIr0 TECTYBaHHSA, Ma€ BupillanibHE 3HAYEHHSA
A5 pO3p006KKM yCNiWHOT cTpaTeril 3abe3neyYeHHsA AKOCTiI.
Ao nig Yac poboTH AOBOANTLCS YaCTO CTUKATUCHA 3 TaKUMU
TUMaMKn TECTIB, CNig PO3rNAHYTU MOX/TUBICTb TXHbOI
aBToOMaTM3aUil:

e TecToBi BUNaaKu, WO NOBTOPIOKOTLCS 3 HAaCOM.

e TecToBi BUMNagku, Wo notpebytoTb 6arato yacy.

e TecToBi BMNagku 3i ctabinbHUMW, HE3MIHHUMW

BUMOramMu.
e TecToBi BUNagKu, CXmnbHi A0 MOACBKNX MOMWUSIOK.
e TecToBi BMNagku 3i 3HAYHMM NMPOCTOEM MiXK KPOKaMW.

“o automate |
ot not to automate
that is the question”

~ William Shakespeare




OuiHKa gouinbHOCTI aBTOMAaTU3aLlil TECTYBaHHS

BapTo BNpoBagkyBaT aBTOMaTU3aLlilo TeCTYBaHHSA KOU:

aBTOMaTM3aLid TeCcTiB eKOHOMIYHO BUrigHILLA 3@ py4yHe
TEeCTyBaHHS

TECTyBaHHSA € MOBTOPIOBAHMUM, HaNpukKnag, perpecinHe
TECTYyBaHHS

TEeCTyBaHHSA BPYYHY NMOYMHAE 3anmaTn Bce Oinblue i
OinbLe 4vacy

BUKOHAHHA TECT-KENCIB cTaHe BiNblU TOYHUM
TECTYBaHHSA MPOBOANTLCS YacTo

NOTPIOHO BMKOHYBATU Pi3Hi TECTU OQHOYACHO

“@o automate

ot nof (o automae
that is the question”

~ William Shakespeare




KuTtteBmn UMK aBTOMaTU3aLil TeCTyBaHHS

XKuTtTeBUM UMKN aBTOMAaTM3AaLITl TECTYBaHHSA — Li€ MPOLEC, AKUA CKNAOAETbCS 3
LLeCTM OCHOBHMX eTariB Ansa 3abe3neyeHHs e(peKTUBHOro T1a AKicCHoOro
TeCTyBaHHA NPOrpaMHOro 3abesneyeHHs.

1. BusHaueHHsa ob6cary aBToMmatm3aadii (Feasibility Analysis)

MeTa: BupiwmnTtun, aki came 4yacTMHM Nporpamm 1a aKi TeCTOBi cueHapil AOUiNbHO
aBTOMaTtu3yBaTu.

2. Bubip iHcTpymMeHTiB Anga aBToMaTtu3aduil (Tool Selection)

Merta: lMigibpatv NpaBWbHI IHCTPYMEHTH, AKi BiANOBIAaOTb TEXHOMOMIAM MPOEKTY,
OloQKETY Ta HaBMYKAM KOMaHaMW.

3. MNnaHyBaHHS, an3sanH Ta ctparterisa (Test Planning, Design, and Strategy)
MeTta: CTBOpUTU AeTanbHy "AOPOXHIO KapTy" AN BCbOro npouecy TeCTyBaHHS.
4. HanawTyBaHHA TecToBOro cepegosuula (Test Environment Setup)

Merta: lNigrotyBaTtu ctabifnibHe Ta i30/1bOBaHE cepefoBuLLE, WO MaKCUManbHO
HabMXeHe 0O peaslbHUX YMOB eKCnyaTtalil NpoayKTy.

5. Po3po6ka Ta BUKOHaHHA TecToBUX cKpunTiB (Script Development and
Execution)

MeTta: Hanucatn kog, akunii 6yae BUKOHYBaTK TECTOBI cLeHapil, Ta 3anyCcTuTu Noro.

6. AHani3 pe3ynbrartiB Ta 3BIiTHICTb (Analysis and Reporting)
MeTta: OuiHUTK pe3ynbTaTn BUKOHaHHS TECTIB Ta HaA4aTh 3BIT 3aUikaBNeHUM
CTOPOHaM.

Stages of Automation Testing_Life Cycle

1. Determining the Scope of Test Automation

2. Selecting the Right Automation Tool

3. Test Plan + Test Design + Test Strategy

A Setting Up The Test Environment

6. Analysis + Generation of Test Results & Test




IHCTPYMEHTU Ta PENMBOPKU ONs aBTOMATU3aU|l
TECTYBaHHS

Ons unit: JUnit, TestNG, NUnit, xUnit, pytest.

Ona Ul: Selenium, Cypress, Playwright.

Ona API: Postman/Newman, RestAssured, pytest + requests.
Onqa performance: JMeter, Gatling, Locust.

Ona CI/CD: Jenkins, GitHub Actions, GitLab CI.



IHCTPYMEHTU Ta PPENMBOPKM ANa aBTOMaTMU3auil
TEeCTyBaHH4A

xUnit.net — e 6€3KOWTOBHUN IHCTPYMEHT 3 BiAKPUTUM KOAOM ANnd
CcninbHOTU MoaynbHoro TectyBaHHa C#, F# Ta Visual Basic. xUnit.net Bepcii 3
nigtpumye .NET 8.0 abo nisHiwoi Bepcil, a Takox .NET Framework 4.7.2 a6o
Mi3HiWol BepCil.

namespace SampleProject;

public class UnitTestl
{
public static int Add(int x, int y) =>
X +y;

[Fact]
public void Good() =>
Assert.Equal(4, Add(2, 2));

[Fact]
public void Bad() =>
Assert.Equal(5, Add(2, 2));



IHCTPYMEHTN Ta PPEUMBOPKN AN aBTOMaTU3auil
TECTYBaHHS

Selenium — ue Habip IHCTPYMEHTIB 3 BIAKPUTUM BUXIOHUM KOAOM AONd
aBTOMaTU3auil po6oTn 6pay3epiB, WO BUKOPUCTOBYETLCA NepeBaxHoO and
TecTyBaHHA BeO-goaaTKiB. BiH NigTpUMyE pi3Hi MOBU NporpamyBaHHS, Taki
ak Java, Python, C# Ta iHwWIi, 4O3BONMAIOUM CTBOPIOBATU aBTOMaTU30BaHI
TeCcTn gns Beb6-CTOPIHOK Ta BUKOHYBATU PYTUHHI 3aBaHHA B Opay3epi.

" Selenium *

100 mcg

[
eas

Selenium Grid

Selenium IDE

Selenium WebDriver

If you want to create robust, browser-based regression
automation suites and tests, scale and distribute scripts
across many environments, then you want to use
Selenium WebDriver, a collection of language specific
bindings to drive a browser - the way it is meant to be
driven.

If you want to create quick bug reproduction scripts,
create scripts to aid in automation-aided exploratory

testing, then you want to use Selenium IDE; a Chrome,
Firefox and Edge add-on that will do simple record-and-

playback of interactions with the browser.

If you want to scale by distributing and running tests on
several machines and manage multiple environments
from a central point, making it easy to run the tests
against a vast combination of browsers/OS, then you
want to use Selenium Grid.


https://www.selenium.dev/

IHCTPYMEHTU Ta PENMBOPKU ONs aBTOMATU3aU|l
TECTYBaHHS

Apache JMeter — e nporpamMHe 3abe3sneyeHHs 3 BiaKpUTUM BUXIAHUM KOOOM, MPU3HAYeHr
015 HaBaHTaXXyBas/IbHOro TeCTyBaHHA (DYHKLIOHANbHOT MOBEeAiHKM Ta BUMIpOBaAHHA
NpoAyKTUBHOCTI. Crno4vaTky BoHa Oyna po3pobneHa ansa tectyBaHHA BeEO-3aCTOCYHKIB, ane 3
TOr0 Yyacy po3Lwmpuaiaca o iHWNX TECTOBUX PYHKLIN.

Apache JMeter MOXHa BUKOPUCTOBYBATK /15 TECTYBAHHA NPOAYKTUBHOCTI K CTaTUYHUX, TaK i
OVHAMIYHUX pecypcCiB, a TaKOX AMHaMiIYHMX BEO-3aCTOCYHKIB.

MNoro MoxxHa BUKOPUCTOBYBATU A5 iMiTaLii BUCOKOrO HaBaHTaXEHHS Ha cepBep, rpyny
cepBepiB, Mepexy abo 00'ekT ANa NepeBipKN NOro MiLHOCTIi abo ANna aHanisy 3arasabHol

MPOAYKTUBHOCTI 38 Pi3HMUX TUNIB HaBaAHTa>XEeHH4.
APACHE
// JMeter’


https://jmeter.apache.org/

IHCTPYMEHTU Ta PENMBOPKU ONs aBTOMATU3aU|l

TeCTYBaHHS

CI/CD (Continuous Integration/Continuous Delivery
a6o Continuous Deployment) — Le Habip NpakTuK y
po3po0bLi NporpaMHOro 3abesneyeHHs, LWo
aBTOMATU3YIOTb NPOLECU 3MINTTA KOAY, MOro
TECTyBaHHSA Ta PO3ropTaHHA A9 NPUCKOPEHHSA Ta
NigBULWEHHS HA4iMHOCTI BUMYCKY OHOBJIEHb.

Cl (6e3nepepBHa iHTerpauif) osHa4a€e 4yacte
o6'efHaHHA KOoAy Bif Pi3HUX PO3POOHUKIB Yy CMiflbHWUI
PEeno3nTopin 3 aBTOMATUYHNM 3aMyCKOM TeCTiB 414
BMABIEHHA MOMW/IOK.

CD (6e3nepepBHa goctaBKa ab0 po3ropTaHHSA)
3aBepLuye npouec, aBToOMaTtMYHO roTyouun Kog Ao
penily (goctaBka) abo BianpaBnAYM NOro Ha
NpodakLH (po3ropTaHHS), Wo 3abe3neyye weuale
Ta SKiCHiLle nocTavdaHHSA NMPOAYKTY KOPUCTyBayaM.

&

X"RA Q} git RA docker QWS

DC/0S
X Confluence %
\)
Maven 8

‘ Sb‘t‘} kubernetes
& m conESHIP a
@ Nagios’
Selenium Nag )DATADOG

Jenkins splunk

=
CHEF

AAAAAAA

31vyd3do

testRigor



[1akyio 3a yeary!



