
Тестування, верифікація та валідація ПЗ 



Концидайло Андрій Михайлович

Quality Assurance Engineer
asp_kam1@student.ztu.edu.ua
@AndyFox96



Техніки тест дизайну



Тип тестування

Деякі тестування включають виконання 
компонента або системи, що тестується; таке 
тестування називається динамічним. Інше 
тестування не передбачає виконання компонента 
або системи, що тестується; таке тестування 
називається статичним тестуванням.



1. Статичні техніки
(використовуються без виконання коду)

● Рецензії (Reviews) — перевірка документації, коду, тест-кейсів.

● Інспекції (Inspections) — формалізований аналіз артефактів із фіксацією дефектів.

● Проведення walkthrough (ознайомчих переглядів) — спільний розбір документа.

● Аналіз (Static Analysis) — автоматичне виявлення помилок у коді чи моделях.



Тестування чорної ящика

Тестування чорного ящика приймає масив вхідних 
даних і шукає генерацію визначених виходів. Ідея 
цієї назви полягає в тому, що вміст коду, що 
тестується, невідомий досліднику і, за 
визначенням, тестувальнику, який займається 
лише перевіркою функцій.



 Тестування білого ящика

Тести білого ящика знаходяться на іншому кінці 
спектру. Вони засновані на точному знанні того, що 
відбувається з тестованим кодом, і тести виконуються 
насамперед для перевірки надійності коду, а не його 
абсолютної функціональності.

Тестування білого ящика виконується на початку 
процесу розробки за допомогою модульних тестів і на 
ранніх етапах фази інтеграції. Тестування чорного 
ящика є типовим для останніх етапів, де важлива 
реакція на конкретні сценарії роботи.



2. Динамічні техніки (на основі виконання коду)
2.1. Базовані на специфікації (Black-box)

(перевірка функціональності без знання внутрішньої логіки)

● Еквівалентне розбиття (Equivalence Partitioning)

● Аналіз граничних значень (Boundary Value Analysis)

● Таблиця прийняття рішень (Decision Table Testing)

● Тестування переходів станів (State Transition Testing)

● Комбінаторне тестування (Pairwise, n-wise)

● Cause-Effect Graphing (Граф причинно-наслідкових зв’язків)

● Use Case Testing (Тестування на основі сценаріїв використання)



2.2. Базовані на структурі (White-box)

(перевірка внутрішньої логіки, коду, структури)

● Покриття операторів (Statement Coverage)

● Покриття гілок (Branch/Decision Coverage)

● Покриття умов (Condition Coverage)

● Покриття шляхів (Path Coverage)

● Testing Loops (перевірка циклів)



2.3. Базовані на досвіді (Experience-based)

(використання знань, інтуїції та досвіду тестувальника)

● Ad-hoc Testing (Імпровізоване тестування)

● Exploratory Testing (Дослідницьке тестування)

● Error Guessing (Прогнозування помилок)

● Checklist-based Testing (Тестування за чеклістами)

● Session-based Testing (Тестування в сесіях)



3. Інші практичні техніки
(часто застосовуються в реальних проектах разом з основними)

● Combinatorial Testing (Pairwise, All-pairs)

● Negative Testing (Негативне тестування)

● Regression Testing Techniques (Smoke, Sanity, Impact-based)

● Risk-based Testing (Ризик-орієнтоване тестування)

● A/B Testing (для web та mobile продуктів)

● Mutation Testing (для оцінки ефективності тестів)



Техніки тест дизайну



Техніки чорного ящика (black box, behavior-based, 
specification-based techniques)
● Тестові умови, тестові сценарії та тестові дані виходять з базису тестування, 

який може включати вимоги, специфікації, сценарії використання та user 
stories

● Тестові сценарії можуть використовуватися для визначення невідповідностей 
та відхилень між вимогами та реалізацією

● Еквівалентне розділення
● Граничні значення
● Діаграма переходу станів
● Таблиця прийняття рішень
● Діаграма сценаріїв використання
● Попарне тестування



Техніки білого ящика (white box techniques, glass box, 
structure-based)

● Тестові умови, тестові сценарії та тестові дані виходять з базису тестування, 
який може включати код, архітектуру, детальну архітектуру або будь-яке інше 
джерело інформації про структуру програмного забезпечення

● Вимірювання покриття засноване на елементах структури (код, інтерфейси і т.
д.)

● Специфікації використовуються як джерело додаткової інформації для 
визначення очікуваних результатів тестових сценаріїв

● Тестування та покриття операторів
● Тестування та покриття умов



Техніки, що ґрунтуються на досвіді

● Тестові умови, тестові сценарії та тестові дані виходять з базису 
тестування, який може включати знання та досвід тестувальників, 
розробників, користувачів та інших зацікавлених осіб.

● Вгадування помилок
● Дослідницьке тестування
● Тестування на основі чек-лістів



Еквівалентне
розділення



Еквівалентне розділення

● Еквівалентне розбиття поділяє дані на групи (класи еквівалентності), які 
обробляються схожим способом

● Для досягнення 100% покриття за допомогою цього методу, тестові 
сценарії повинні покривати всі позитивні та негативні класи, 
перевіряючи хоча б одне значення кожного класу.

● Тобто в еквівалентному поділі з 1 діапазону створюється 1 тест кейс.



Пояснювальна бригада

18-60

валідні

- ∞-17

не валідні

61-∞

не валідні



Питання з ISTQB #1

Числове поле має містити значення між 1 та 15. Використовуючи 
еквівалентний поділ, скільки мінімум тест кейсів потрібно створити для 
максимального покриття?

Не 
валідні

< 1

Валідні
1 - 15

Не 
валідні
16 <=



Питання з ISTQB #2

Числове поле має містити значення між 1 та 15. Використовуючи 
еквівалентний поділ, який із можливих варіантів є валідною колекцією 
еквівалентних класів у цьому сценарії?

1. Менше 1, 1-15, більше 15
2. Негативні числа, 1-15, більше ніж 15
3. Менше 1, 1-14, більше 15
4. Менше 0, 1-14, 15 і більше

Не 
валідні

< 1

Валідні
1 - 15

Не 
валідні
16 <=



Питання з ISTQB #2

Числове поле має містити значення між 1 та 15. Використовуючи 
еквівалентний поділ, який із можливих варіантів є валідною колекцією 
еквівалентних класів у цьому сценарії?

1. Менше 1, 1-15, більше 15
2. Негативні числа, 1-15, більше ніж 15
3. Менше 1, 1-14, більше 15
4. Менше 0, 1-14, 15 і більше

Не 
валідні

< 1

Валідні
1 - 15

Не 
валідні
16 <=



Питання з ISTQB #3 (для фанатів пажощє)

У системі для розрахунку податку, який потрібно сплатити, у працівника 
4000 зарплати не оподатковується. Наступні 1500 оподатковуються 10% 
податку. Наступні 28 тисяч оподатковуються 22% податку. Усі наступні суми 
оподатковуються 40%. Які з наступних груп зарплат потраплять до одного 
еквівалентного класу?

1. 4800, 14000, 28000
2. 5200, 5500, 28000
3. 28001, 32000, 35000
4. 5800, 28000, 32000 4001 - 55001 - 4000 5501 - 33500 33501+



Питання з ISTQB #3 (для фанатів пажощє)

У системі для розрахунку податку, який потрібно сплатити, у працівника 
4000 зарплати не оподатковується. Наступні 1500 оподатковуються 10% 
податку. Наступні 28 тисяч оподатковуються 22% податку. Усі наступні суми 
оподатковуються 40%. Які з наступних груп зарплат потраплять до одного 
еквівалентного класу?

1. 4800, 14000, 28000
2. 5200, 5500, 28000
3. 28001, 32000, 35000
4. 5800, 28000, 32000 4001 - 55001 - 4000 5501 - 33500 33501+



Тут можна не тільки числа!

Валідні Не валідні

+38099 999 99 99 +38099 999 99 99 9

099 999 99 99 +38099 999 99 9k

abcdefuuuuu@gmail.com abc@gmail.com

88005553535@gmail.com 12345@gmail.com

i_love_rocknroll_duzhe_sylno@gmail.com iloverocknrollgmail.com

iloverocknroll@gmailcom



Граничні
значення



Еквівалентне розділення

● Аналіз граничних значень перевіряє межі числового діапазону
● Значення з валідного діапазону називаються валідні граничні значення, 

та якщо з невалідного діапазону - невалідні значення
● Граничні значення визначаються як ЛГ, ЛГ-1, ПГ, ПГ+1, де ЛГ та ПГ - це 

нижня та верхня межі у сценарії



Пояснювальна бригада

18-60

валідні

- ∞-17

не валідні

61-∞

не валідні

ЛГ-1
17

ЛГ
18

ПГ
60

ПГ+1
61



Питання з ISTQB #1

Текстове поле в програмі приймає введення віку користувача. Значення від 
18 до 30, включаючи 18 і 30, будуть прийняті системою. Використовуючи 
техніку Граничних значень, яка мінімальна кількість тестів кейсів потрібна для 
максимального покриття?

Не 
валідні
<= 17

Валідні
18-30

Не 
валідні

31<=



Питання з ISTQB #2

Текстове поле в програмі приймає введення віку користувача. 
Значення від 18 до 30, включаючи 18 і 30, будуть прийняті системою. 
Використовуючи техніку межових значень, який варіант відповіді 
містить валідну колекцію граничних значень?

1. 16, 17, 19, 30
2. 17, 18, 19, 31
3. 17, 18, 30, 31
4. 18, 19, 20, 31

Не 
валідні
<= 17

Валідні
18-30

Не 
валідні

31<=



Питання з ISTQB #2

Текстове поле в програмі приймає введення віку користувача. 
Значення від 18 до 30, включаючи 18 і 30, будуть прийняті системою. 
Використовуючи техніку межових значень, який варіант відповіді 
містить валідну колекцію граничних значень?

1. 16, 17, 19, 30
2. 17, 18, 19, 31
3. 17, 18, 30, 31
4. 18, 19, 20, 31

Не 
валідні
<= 17

Валідні
18-30

Не 
валідні

31<=



Питання з ISTQB #3 

Текстове поле в програмі приймає введення віку користувача. Значення від 
18 до 30, включаючи 18 і 30, будуть прийняті системою. Використовуючи 
техніку Граничних значень та Еквівалентного поділу, який варіант відповіді 
містить валідні граничні значення та валідне еквівалентне значення?

1. 17, 18, 20
2. 18, 30, 25
3. 18, 30, 31
4. 19, 20, 31 Не валідні

<= 17
Валідні
18-30

Не валідні
31 <=



Питання з ISTQB #3 

Текстове поле в програмі приймає введення віку користувача. Значення від 
18 до 30, включаючи 18 і 30, будуть прийняті системою. Використовуючи 
техніку Граничних значень та Еквівалентного поділу, який варіант відповіді 
містить валідні граничні значення та валідне еквівалентне значення?

1. 17, 18, 20
2. 18, 30, 25
3. 18, 30, 31
4. 19, 20, 31 Не валідні

<= 17
Валідні
18-30

Не валідні
31 <=



Де можна використовувати цю техніку?

Всюди, де є числові обмеження: 

● вік
● довжина паролю
● номер телефону

Навіщо потрібна ця техніка?

Для того, щоб люди не тестували 10 символів у паролі, які нікому не потрібні, 
тому що вони знаходяться на проміжку між 6 і 16. Для того, щоб не тестувати 
вік 20, 30, 40, тому що всі ці значення знаходяться між 18 і 60. Тому що всі ці 
перевірки будуть безглузді, адже ми вже протестували граничні 
значення.



Таблиця 
Прийняття рішень



Таблиця прийняття рішень

● Таблиця прийняття рішень покриває системні вимоги, у яких є логічні умови
● Специфікації аналізують та зображають Умови та Дії системи у формі 

таблиці
● Найчастіше Умови та Дії подаються у формі “True” та “False”.

Умови Тест кейс 1 Тест кейс 2 Тест кейс 3 Тест кейс 4

Умова 1 True True False False

Умова 2 True False True False

Дії

Дія х х х х



Який очікуваний результат для кожного з 2 тест 
кейсів?

Тест кейси:

А. Власник картки, знімає Срібну

Б. Не має карти, знімає Платинову

Варіанти відповідей:

А - не покращувати, Б - не покращувати

А - не покращувати, Б - покращити до 
Золотої

А - покращити до Срібної, Б - покращити 
до Срібної

А - покращити до Золотої, Б - не 
покращувати

Правило 
1

Правило 
2

Правило 
3

Правило 
4

Умови

Власник 
картки Сітібанк

Так Так Ні Ні

Тип кімнати Срібна Платина Срібна Платина

Дії

Покращити до 
Золотої

Так Ні Ні Ні

Покращити до 
Срібної

N/A Так N/A Ні



Дано наступну ТПР. Які з тест кейсів та 
очікуваних результатів ВАЛІДНІ?

1. 23 роки, клас A, Преміум- 
90, Ультра - 2500

2. 51 рік, клас C, Преміум- 100, 
Ультра - 500

3. 31 рік, клас B, Преміум- 70, 
Ультра - 2500

4. 43 роки, клас C, Преміум- 
100, Ультра - 1000

Правило 
1

Правило 
2

Правило 
3

Правило 
4

Умови

Вік < 21 21-29 30-50 > 50

Клас страхівки A A / B B / C / D C / D

Дії

Преміум 100 90 70 70

Ультра 2500 2500 500 1000



Створюємо свою Таблицю прийняття рішень

● Валідні варіанти ми позначатимемо словом true або буквою t, або 
цифрою 1.

● Невалідні ми позначатимемо або словом false або буквою f, або цифрою 
0.

Чому цифри 1 та 0? Так пишуть програмісти. У бінарному коді: 0 – це брехня, 1 
– це правда. Наприклад, якщо лампочка горить – це 1, а якщо вона вимкнена 
– 0.



Приклад №1

Потрібно завантажити аватарку, і є вимоги: вона має важити менше 1 Гб і 
бути у форматі фото (jpg, png або gif). У таблиці я роблю два рядки:

1. Чи це фото?
2. Чи підходить розмір?

1 2 3 4

Формат jpg? нет нет да да

Розмір до 1 Гб? нет да нет да

Результат Fail Fail Fail Pass



Приклад №2
На прикладі Instagram ми маємо заповнити чотири поля:

1. мобільний телефон чи електронну адресу;
2. ім'я та прізвище;
3. нікнейм користувача;
4. пароль

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Електронна адр.

ПІБ

Нікнейм

Пароль



Приклад №2
На прикладі Instagram ми маємо заповнити чотири поля:

1. мобільний телефон чи електронну адресу;
2. ім'я та прізвище;
3. нікнейм користувача;
4. пароль

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Електронна адр. 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ПІБ

Нікнейм

Пароль



Приклад №2
На прикладі Instagram ми маємо заповнити чотири поля:

1. мобільний телефон чи електронну адресу;
2. ім'я та прізвище;
3. нікнейм користувача;
4. пароль

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Електронна адр. 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ПІБ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Нікнейм

Пароль



Приклад №2
На прикладі Instagram ми маємо заповнити чотири поля:

1. мобільний телефон чи електронну адресу;
2. ім'я та прізвище;
3. нікнейм користувача;
4. пароль

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Електронна адр. 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ПІБ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Нікнейм 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Пароль



Приклад №2
На прикладі Instagram ми маємо заповнити чотири поля:

1. мобільний телефон чи електронну адресу;
2. ім'я та прізвище;
3. нікнейм користувача;
4. пароль

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Електронна адр. 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ПІБ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Нікнейм 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Пароль 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



Приклад №2
На прикладі Instagram ми маємо заповнити чотири поля:

1. мобільний телефон чи електронну адресу;
2. ім'я та прізвище;
3. нікнейм користувача;
4. пароль

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Електронна адр. 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

ПІБ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Нікнейм 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Пароль 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Результат F F F F F F F F F F F F F F F T



Приклад №3
В супермаркеті для залучення покупців власник вигадав систему знижок:

1. Якщо ти вперше в магазині, то маєш 10% знижки.
2. Якщо ти постійний клієнт, то у тебе є золота карта та 20% знижки.
3. Якщо у тебе сьогодні день народження, то тобі дають 50% знижки.
4. Якщо ти, скажімо, розбив там пляшку вина і втік, то тебе кидають у бан і нічого не 

будуть продавати

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Вперше 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Є знижкова карта 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

День народження 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Бан 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Результат 0 х 50 х 20 х 50 х 10 х 50 х х х х х



Попарне
тестування



Попарне тестування

 — це методика систематичної комбінаторики тестів, котра забезпечує 
ефективне зниження кількості тестів для перевірки реакції системи на можливі 
комбінації значень її вхідних параметрів. 

Методика заснована на статистичному припущенні, що достатньо перевірити усі 
можливі значення пар вхідних параметрів для того щоб виявити більшість 
дефектів системи залежних від вхідних параметрів.

https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D1%81%D1%82%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F


Головні цілі Pairwise Testing:

● прибрати надлишкові перевірки;
● забезпечити гарне тестове покриття;
● виявити найбільшу кількість багів на мінімальному наборі тестів.

http://pairwise.teremokgames.com/

http://pairwise.teremokgames.com/


Діаграма
переходу станів



Діаграма переходу станів

● Діаграма переходу станів показує початковий і кінцевий стан системи, а 
також описує переходи між станами.

● Діаграма переходу станів показує лише валідні переходи.
● Діаграма складається з пар переходів між двома станами.
● Якщо переходу між двома станами немає, то перехід вважається НЕвалідним.

S1 S2 S3

A B

CD



Діаграма переходу станів

Лід Вода Пар

A B

CD

Test Case ID TC01 TC02 TC03 TC04

Початковий стан Лід Вода Вода Пар

Перехід A D B C

Фінальний стан Вода Лід Пар Вода



Грунтуючись на діаграмі переходу станів 
вмикача, який тест невалідний?

● Вимкнено-> ввімкнено
● Ввімкнено -> вимкнено
● Помилка -> ввімкнено
● Ввімкнено -> помилка

Ввімкнено

Вимкнено

Помилка

S1

S2 S3



Грунтуючись на діаграмі переходу станів 
вмикача, який тест невалідний?

● Вимкнено-> ввімкнено
● Ввімкнено -> вимкнено
● Помилка -> ввімкнено
● Ввімкнено -> помилка

Ввімкнено

Вимкнено

Помилка

S1

S2 S3



Грунтуючись на діаграмі переходу станів 
вмикача, який тест невалідний?

● Вимкнено-> ввімкнено
● Ввімкнено -> вимкнено
● Помилка -> ввімкнено
● Ввімкнено -> помилка

Ввімкнено

Вимкнено

Помилка

S1

S2 S3



Приклад з відкритого доступу #1



Приклад з відкритого доступу #2



Приклад з відкритого доступу #3



https://app.diagrams.net/

https://app.diagrams.net/


Діаграма
сценаріїв використання



Приклад #1



Приклад #2



Приклад #3



Тестування сценаріїв використання

● Сценарії використання 
описують взаємодію 
між користувачем 
(актором) та системою

● Це допомагає 
створювати тест кейси 
для інтеграційного, 
системного та 
приймального 
тестування.

Основний 
позитивний 
сценарій

А: актор
С: система

Step Опис

1 А: вставляє картку

2 С: перевіряє картку і просить PIN

3 А: вводить PIN

4 С: перевіряє PIN

5 С: дає доступ до аккаунту

Доповнення 2а Карта невалідна. С: показати 
повідомлення і відхилити картку

4а PIN невалідний. С: показати 
повідомлення і попросити ввести PIN 
знову

4б PIN невалідний тричі
С: З’їсти картку і вийти



Тестування сценаріїв використання

● Сценарії використання описують «потоки процесів» у системі з 
урахуванням її фактичного використання.

● Сценарії використання допомагають виявити дефекти у потоці процесу під 
час реального використання системи.

● Вони також допомагають виявити дефекти інтеграції, спричинені 
взаємодією різних компонентів.



https://app.diagrams.net/

https://app.diagrams.net/


Покриття 
операторів



Вступ до технік білого ящика

● Statement testing (тестування операторів) тестує оператори в даному 
фрагменті коду

● Decision testing (тестування умов) тестує умови в даному фрагменті коду
● Тестування умов ще відоме як Branch testing
● Тестування умов сильніше, ніж тестування операторів.
● 100% покриття умов гарантує 100% покриття операторів, але не навпаки.



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

start

end

B

A>B

A, B

A

End if

False

True



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

start

end

B

A>B

A, B

A

End if

False

True

 Branches

Statements



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Шлях - це проходження по 
коду, починаючи з точки 
старт і закінчуючи точкою 
кінець.

start

end

B

A>B

A, B

A

End if

False

True



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Шлях - це проходження по 
коду, починаючи з точки 
старт і закінчуючи точкою 
кінець.

start

end

B

A>B

A, B

A

End if

False

True

1



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Шлях - це проходження по 
коду, починаючи з точки 
старт і закінчуючи точкою 
кінець.

start

end

B

A>B

A, B

A

End if

False

True

1 2



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Скільки потрібно створити 
мінімум тест кейсів на 100% 
statement покриття?



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Скільки потрібно створити 
мінімум тест кейсів на 100% 
statement покриття?

start

end

B

A>B

A, B

A

End if

False

True

Statement coverage = мін. к-
ть шляхів, потрібна для 
покриття всіх statements

Statement coverage = 2



Приклад #1

Чекати, щоб вставили картку

IF карта валідна THEN

показати “Введіть PIN-код”

IF PIN валідний THEN

вибрати транзакцію

ELSE

показати “PIN невалідний”

ELSE

відхилити карту



Приклад #1

Чекати, щоб вставили картку

IF карта валідна THEN

показати “Введіть PIN-код”

IF PIN валідний THEN

вибрати транзакцію

ELSE

показати “PIN невалідний”

ELSE

відхилити карту

Чекати

Валідна 
картка?

Відхилити
карту

Показати
“Введіть…

Валідний 
PIN?

Обрати 
транзакц…

Показати
“PIN нева…

Кінець



Приклад #1

Чекати, щоб вставили картку

IF карта валідна THEN

показати “Введіть PIN-код”

IF PIN валідний THEN

вибрати транзакцію

ELSE

показати “PIN невалідний”

ELSE

відхилити карту

Statement coverage = 3

Чекати

Валідна 
картка?

Відхилити
карту

Показати
“Введіть…

Валідний 
PIN?

Обрати 
транзакц…

Показати
“PIN нева…

Кінець



Приклад #1

Чекати, щоб вставили картку

IF карта валідна THEN

показати “Введіть PIN-код”

IF PIN валідний THEN

вибрати транзакцію

ELSE

показати “PIN невалідний”

ELSE

відхилити карту

Statement coverage = 3

Чекати

Валідна 
картка?

Відхилити
карту

Показати
“Введіть…

Валідний 
PIN?

Обрати 
транзакц…

Показати
“PIN нева…

Кінець

TIP: Statement coverage = 1 + к-ть ELSE



Приклад #2

Read A

IF A > 0 THEN

IF A = 21 THEN

Print “Key”

ENDIF

ENDIF



Приклад #2

Read A

IF A > 0 THEN

IF A = 21 THEN

Print “Key”

ENDIF

ENDIF

Read

A > 0

End

A = 21

Print



Приклад #2

Read A

IF A > 0 THEN

IF A = 21 THEN

Print “Key”

ENDIF

ENDIF

Statement coverage = 1

Read

A > 0

End

A = 21

Print



Приклад #3
Read A

Read B

IF A > 0 THEN

IF B = 0 THEN

Print “No values”

ELSE

Print B

IF A > 21 THEN

Print A

ENDIF

ENDIF

ENDIF



Приклад #3
Read A

Read B

IF A > 0 THEN

IF B = 0 THEN

Print “No values”

ELSE

Print B

IF A > 21 THEN

Print A

ENDIF

ENDIF

ENDIF

Read

A > 0

End

B = 0 Print

A > 21 PrintPrint



Приклад #3
Read A

Read B

IF A > 0 THEN

IF B = 0 THEN

Print “No values”

ELSE

Print B

IF A > 21 THEN

Print A

ENDIF

ENDIF

ENDIF

Read

A > 0

End

B = 0 Print

A > 21 PrintPrint

Statement coverage = 2



Приклад #4
Read A

Read B

IF A < 0 THEN

Print “A negative”

ELSE

Print “A positive”

ENDIF

IF B < 0 THEN

Print “B negative”

ELSE

Print “B positive”

ENDIF



Приклад #4
Read A

Read B

IF A < 0 THEN

Print “A negative”

ELSE

Print “A positive”

ENDIF

IF B < 0 THEN

Print “B negative”

ELSE

Print “B positive”

ENDIF

Read A < 0

End

B < 0

Print

Print

Print

Print



Приклад #4
Read A

Read B

IF A < 0 THEN

Print “A negative”

ELSE

Print “A positive”

ENDIF

IF B < 0 THEN

Print “B negative”

ELSE

Print “B positive”

ENDIF

Read A < 0

End

B < 0

Print

Print

Print

Print

Statement coverage = 2



Приклад #4
Read A

Read B

IF A < 0 THEN

Print “A negative”

ELSE

Print “A positive”

ENDIF

IF B < 0 THEN

Print “B negative”

ELSE

Print “B positive”

ENDIF

Read A < 0

End

B < 0

Print

Print

Print

Print

Statement coverage = 2

TIP: Якщо є 
ELSE
Statement 
покриття = 2

Якщо немає 
ELSE
Statement 
покриття = 1



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке statement 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 75%
3. 90%
4. 100%



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке statement 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 75%
3. 90%
4. 100%

A

B

CF D

HG

I



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке statement 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 75%
3. 90%
4. 100%

A

B

CF D

HG

I

Statement покриття = 
кількість тверджень 
виконано / загальна 
кількість тверджень



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке statement 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 75%
3. 90%
4. 100%

A

B

CF D

HG

I

Statement покриття = 
кількість тверджень 
виконано / загальна 
кількість тверджень

6 із 8 тверджень 
перевірено



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке statement 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 75%
3. 90%
4. 100%

A

B

CF D

HG

I

Statement покриття = 
кількість тверджень 
виконано / загальна 
кількість тверджень

6 із 8 тверджень 
перевірено



Покриття 
умов



Вступ до технік білого ящика

● Statement testing (тестування операторів) тестує оператори в даному 
фрагменті коду

● Decision testing (тестування умов) тестує умови в даному фрагменті коду
● Тестування умов ще відоме як Branch testing
● Тестування умов сильніше, ніж тестування операторів.
● 100% покриття умов гарантує 100% покриття операторів, але не навпаки.



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

start

end

B

A>B

A, B

A

End if

False

True



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

start

end

B

A>B

A, B

A

End if

False

True

 Branches

Statements



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Шлях - це проходження по 
коду, починаючи з точки 
старт і закінчуючи точкою 
кінець.

start

end

B

A>B

A, B

A

End if

False

True



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Шлях - це проходження по 
коду, починаючи з точки 
старт і закінчуючи точкою 
кінець.

start

end

B

A>B

A, B

A

End if

False

True

1



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Шлях - це проходження по 
коду, починаючи з точки 
старт і закінчуючи точкою 
кінець.

start

end

B

A>B

A, B

A

End if

False

True

1 2



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Скільки потрібно створити 
мінімум тест кейсів на 100% 
decision покриття?



Пояснювальна бригада - блок-схеми

Read A
Read B
If A>B then

Print “A більше”
Else

Print “B більше”
End if

Скільки потрібно створити 
мінімум тест кейсів на 100% 
decision покриття?

start

end

B

A>B

A, B

A

End if

False

True

Decision coverage = мін. к-ть 
шляхів, потрібна для 
покриття всіх branches

Decision coverage = 2



Приклад #1

Чекати, щоб вставили картку

IF карта валідна THEN

показати “Введіть PIN-код”

IF PIN валідний THEN

вибрати транзакцію

ELSE

показати “PIN невалідний”

ELSE

відхилити карту



Приклад #1

Чекати, щоб вставили картку

IF карта валідна THEN

показати “Введіть PIN-код”

IF PIN валідний THEN

вибрати транзакцію

ELSE

показати “PIN невалідний”

ELSE

відхилити карту

Чекати

Валідна 
картка?

Відхилити
карту

Показати
“Введіть…

Валідний 
PIN?

Обрати 
транзакц…

Показати
“PIN нева…

Кінець



Приклад #1

Чекати, щоб вставили картку

IF карта валідна THEN

показати “Введіть PIN-код”

IF PIN валідний THEN

вибрати транзакцію

ELSE

показати “PIN невалідний”

ELSE

відхилити карту

Decision coverage = 3

Чекати

Валідна 
картка?

Відхилити
карту

Показати
“Введіть…

Валідний 
PIN?

Обрати 
транзакц…

Показати
“PIN нева…

Кінець



Приклад #1

Чекати, щоб вставили картку

IF карта валідна THEN

показати “Введіть PIN-код”

IF PIN валідний THEN

вибрати транзакцію

ELSE

показати “PIN невалідний”

ELSE

відхилити карту

Decision coverage = 3

Чекати

Валідна 
картка?

Відхилити
карту

Показати
“Введіть…

Валідний 
PIN?

Обрати 
транзакц…

Показати
“PIN нева…

Кінець

TIP: Decision coverage = 1 + к-ть IF
(y statement - else)



Приклад #2

Read A

IF A > 0 THEN

IF A = 21 THEN

Print “Key”

ENDIF

ENDIF



Приклад #2

Read A

IF A > 0 THEN

IF A = 21 THEN

Print “Key”

ENDIF

ENDIF

Read

A > 0

End

A = 21

Print



Приклад #2

Read A

IF A > 0 THEN

IF A = 21 THEN

Print “Key”

ENDIF

ENDIF

Decision coverage = 3

Read

A > 0

End

A = 21

Print



Приклад #3
Read A

Read B

IF A > 0 THEN

IF B = 0 THEN

Print “No values”

ELSE

Print B

IF A > 21 THEN

Print A

ENDIF

ENDIF

ENDIF



Приклад #3
Read A

Read B

IF A > 0 THEN

IF B = 0 THEN

Print “No values”

ELSE

Print B

IF A > 21 THEN

Print A

ENDIF

ENDIF

ENDIF

Read

A > 0

End

B = 0 Print

A > 21 PrintPrint



Приклад #3
Read A

Read B

IF A > 0 THEN

IF B = 0 THEN

Print “No values”

ELSE

Print B

IF A > 21 THEN

Print A

ENDIF

ENDIF

ENDIF

Read

A > 0

End

B = 0 Print

A > 21 PrintPrint

Decision coverage = 4



Приклад #4
Read A

Read B

IF A < 0 THEN

Print “A negative”

ELSE

Print “A positive”

ENDIF

IF B < 0 THEN

Print “B negative”

ELSE

Print “B positive”

ENDIF



Приклад #4
Read A

Read B

IF A < 0 THEN

Print “A negative”

ELSE

Print “A positive”

ENDIF

IF B < 0 THEN

Print “B negative”

ELSE

Print “B positive”

ENDIF

Read A < 0

End

B < 0

Print

Print

Print

Print



Приклад #4
Read A

Read B

IF A < 0 THEN

Print “A negative”

ELSE

Print “A positive”

ENDIF

IF B < 0 THEN

Print “B negative”

ELSE

Print “B positive”

ENDIF

Read A < 0

End

B < 0

Print

Print

Print

Print

Decision coverage = 2



Приклад #4
Read A

Read B

IF A < 0 THEN

Print “A negative”

ELSE

Print “A positive”

ENDIF

IF B < 0 THEN

Print “B negative”

ELSE

Print “B positive”

ENDIF

Read A < 0

End

B < 0

Print

Print

Print

Print

Decision coverage = 2

TIP: 
Завжди, 
незалежно від 
ELSE або IF
Decision 
покриття = 2



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке decision 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 62%
3. 75%
4. 100%



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке decision 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 62%
3. 75%
4. 100%

A

B

CF D

HG

I



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке decision 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 62%
3. 75%
4. 100%

A

B

CF D

HG

I

Decision покриття = 
кількість branches 
виконано / загальна 
кількість branches 



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке decision 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 62%
3. 75%
4. 100%

A

B

CF D

HG

I

Decision покриття = 
кількість branches 
виконано / загальна 
кількість branches 

5 із 8 branches 
перевірено



Приклад #5

Для цього фрагмента коду 
було проведено такі 
шляхи/тести. Яке decision 
покриття досягнуто?

Тест 1 - A, B, C

Тест 2 - A, B, D, G, H

1. 50%
2. 62%
3. 75%
4. 100%

A

B

CF D

HG

I

Decision покриття = 
кількість branches 
виконано / загальна 
кількість branches 

5 із 8 branches 
перевірено



Техніки, що 
ґрунтуються 
на досвіді



Техніки, засновані на досвіді

Техніки, засновані на досвіді, використовують уміння тестувальника, інтуїцію та 
досвід зі схожих додатків та технологій.

Зазвичай, ці техніки використовують після застосування формальних технік.

Є кілька сценаріїв, коли тільки техніки, що базуються на досвіді, можуть бути 
використані:

● Погані специфікації
● Мало часу на тестування
● Команда тестування погано розуміється на основах тестування



Вгадування помилок

● Ця техніка вимагає знання дефектів та досвід у додатку
● Потрібно описати можливі дефекти та створити тест кейси, які 

спробують знайти ці дефекти
● Список можливих дефектів може бути створений на основі досвіду, 

типових дефектів та даних про падіння
● Вгадування помилок ґрунтується на:

○ Як додаток працював у минулому
○ Які типи помилок можуть припуститися девелопери
○ Помилки, які були знайдені в подібних додатках



Дослідницьке тестування

● Дослідницьке тестування перевіряє частину програми, яку необхідно 
вивчити

● У дослідному тестуванні створюються неформальні тести, вони 
виконуються, створюється звіт і все це робиться у процесі тестування

● Тест кейси не вимагають підготовки та виконуються у рандомній або 
Ad-Hoc манері

● Виконання тестів обмежено проміжками часу від 30 до 120 хвилин, 
залежно від розміру програми

● Виконання тестів називають сесіями тестування у проміжках часу



Тестування, засноване на чек-лістах
● При тестуванні за чек-листами тестувальник проектує, реалізує та 

виконує тести, що покривають тестові умови, зазначені у чек-листі.
● Як складова аналізу тестувальники можуть створювати нові або 

розширювати чек-листи, або використовувати готові чек-листи, не 
змінюючи їх.

● Такі списки можуть бути побудовані на досвіді, на історичних даних про 
помилки, на інформації про пріоритети для користувачів та розуміння, 
як і чому відбуваються відмови у програмі.

● За відсутності детальних тестових сценаріїв, чек-листи допомагають 
визначити напрями тестування та збільшують узгодженість тестування.

● Оскільки чек-листи містять загальний опис, це знижує повторюваність 
результатів.


