4. DESIGN OF EXPERIMENT AND TESTING A HYPOTHESIS

4.1. Study / experimental design

- SD is the <u>number</u> and spatio-temporal distribution of sampling <u>units</u> ¹, <u>manipulations</u> (treatments) and/or <u>observations</u> to be made on each <u>unit</u> to answer a specific research question ².
- Manipulative exp. can help to establish *causality*.
- There are several techniques that are used to evaluate <u>cause-effect</u> relationships in Ecology.

http://www.countrysideinfo.co.uk

¹ experimental & observational; the usual sampling unit is a *quadrat* (normally consist of a square frame), the most frequently used size being 1 m²;

² designing an experiment *properly* will not only *help* you in analyzing data — it may determine *whether* you can *analyze* data at all!

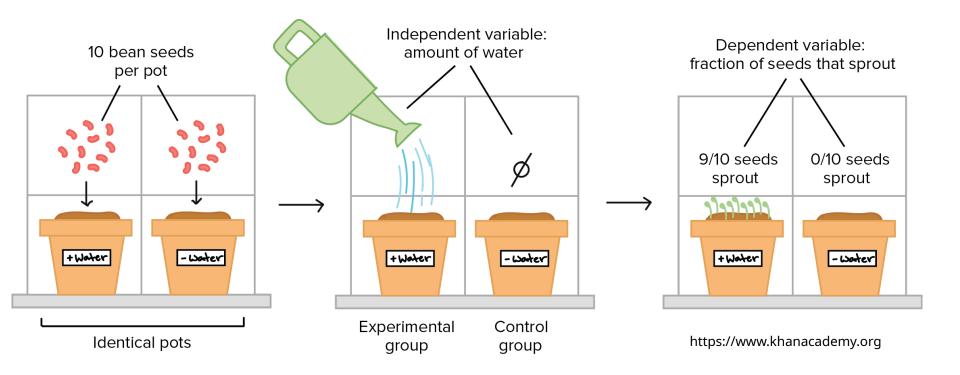
4.2. Experimental requisites (requirements)

- Interpretation of <u>causality</u> depends on:
- · controls;
- · treatments;
- replication of independent units ¹;
- randomization and interspersion /Intə'spəːsɪon/ of treatments ².

1. Controls:

- · are <u>treatments</u> / <u>samples</u> against which manipulations are compared;
- remains the *same* or *equal* throughout the experiment.

¹ *repetition* of an experimental condition so that the *variability* associated with the phenomenon can be estimated;


² пересічення (how to scatter here and there or place at intervals among other things.

- Biological systems *change* over time.
- So, any differences may be due to *treatments* or other *changes* occurring during time period.
- Therefore, the *effects* caused by *treatments* can (and should) be separated from those caused by other *changes*.

Detailed field survey https://www.intechopen.com/chapters/46032

- For example, there are two groups of *identical* pots in the experiment (fig):
- one group (<u>experimental</u>) receives a <u>treatment</u> (water) while the other ("no treatment", <u>control</u>) does not.
- > The control group provides a baseline that lets us see if the *treatment* has an effect.

- The *control* in some exp. is not *necessary* "no treatment".
- E.g., we want to compare plant's *growth* at "normal, current ambient condition" and elevated level of CO₂ in the air.
- One <u>way</u>: current ambient condition (control) and elevated level (e.g. 25% higher level, treatments)*.
- Another <u>way</u>: current ambient condition (treatments) and lower level (e.g. 25% lower, control)**.

^{*} e.g. in year 2050;

^{**} e.g. before the Industrial Revolution.

- 4.3. Rules for experimental design in Ecology
- 1. Begin by *identifying* a *hypothesis* ¹.
- 2. Define *parameters* for the exp. *clearly* ².
- 3. Decide if you would like to perform a *mensurative* or *manipulative* exp. ³.

- ¹ i.e. an explanation of **how** you **think** a system works based on **observation**. The hypothesis will be either **accepted** or **rejected** based on the data collected.
- ² i.e. clearly define terms, you can focus in on exp. *methods* and avoid *ambiguity* /ambr'gju:rti/ the *quality* of being open to more than one *interpretation*; e.g. Some researchers define **disturbance** as any event that changes ecosystem structure or function (such as fires, storms, or logging) while others use a narrower definition (considering only natural events like wildfires or floods as disturbances, excluding human-caused changes). it can lead to: misinterpretation of results; challenges in comparing studies; inconsistent management recommendations-.

³ a *mensurative* exp. involves making *measurements* at different times or in different areas (a *manipulative* exp. involves physically *altering* a treatment group, thus there always are two or more treatments).

- 4. Choose an appropriate <u>sample</u> <u>size</u> that is fitting for the results you wish to obtain ¹.
- 5. Introduce a *control* group ².
- 6. Randomize assignment 3.
- 7. Replicate ⁴.

Precipitation manipulation experiment, Sevellita LTER, New Mexico. The troughs exist to limit precipitation on plants, simulating drought conditions. William T. Pockman, University of New Mexico https://www.fs.fed.us/research

¹ often a *smaller* sample size produces *inaccurate results* for generalization (1) and thus should be avoided;

² biol. systems tend to exhibit <u>temporal</u> change, so a <u>control</u> is <u>necessary</u>.

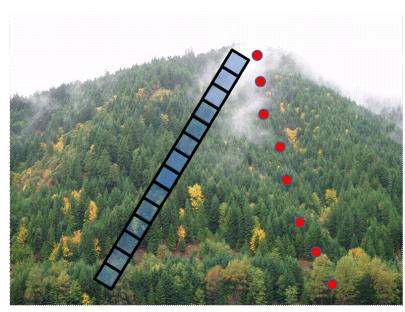
³ randomization allows avoid **bias**.

 $^{^4}$ the number of replicates necessary will <u>vary</u> with design, however it ensures <u>precision</u> in experiments.

- 8. Ensure samples are <u>dispersed</u> in <u>space</u> or <u>time</u> to avoid <u>pseudoreplication</u> ¹.
- 9. Use <u>linear</u> regression based analysis <u>first</u>, before introducing ANOVA ².
- 10. <u>Refrain</u> /rI'freIn/ from <u>deducing</u> results based on P value alone ³.

¹ interspersion /Intə'spə:sɪon/, which ensures replicates are statistically **independent**. If data collected on the samples from the same unit, it is not a genuine **replication**.

² Linear *regression* is more *powerful* to analyze obtained data, and indicates how *dependent* variables change with the *independent* variable.


³ The *p value* is *indicative* of confidence interval, however it fails to indicate how a system actually changes. Effect *size* measures are more *meaningful* in ecology.

- 4.4. Sampling in the field: subjective locations of plots
- 1. <u>Subjective</u> locations of plots (individual samples).
- E.g. we are interested in observing species <u>response</u> to <u>gradients</u>.
- ► It would be valuable to have the gradient *extremes* ¹.
- We may also want to have good representation of the *intermediates*.
- > Subjective locations are easier to implement than objectively-located samples.

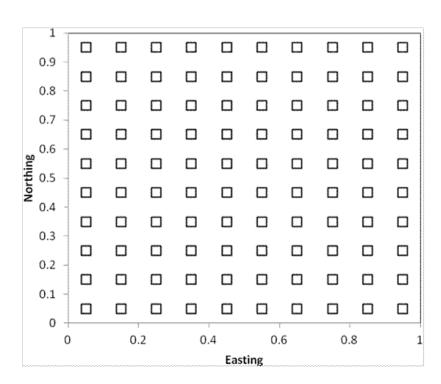
¹ e.g. very wet and very dry, or very steep and very level, or very acidic to very basic.

2. Gradsect.

- E.g. we are interested in species <u>responses</u> to an environmental <u>gradient</u> that varies directionally in space ¹.
- > We subjectively choose the *gradient* we are interested in.
- We can locate our samples in a <u>transect</u>², <u>systematically</u> in a direction of <u>max</u>. change in the gradient (gradsects).
- E. g. the blue squares *quadrats* for plant communities; the red *dots* point samples (pitfall traps).

http://ordination.okstate.edu/sampling.htm

¹ E.g. in bird species distributions as a function of elevation on a mountain;


² a *path* along which one counts and records occurrences of the species of study (e.g. plants).

- 4.5. Sampling in the field: completely random and systematic placement
- 1. <u>Random</u> plot locations: <u>every point</u> in the sampling area has an <u>equal chance</u> of being <u>chosen</u> ¹.
- > Another way to use a random number generator on a computer ².
- Just due to chance, some areas will be <u>oversampled</u> and some areas will be <u>undersampled</u>.

¹ e.g. by walking a certain number of steps with their eyes closed.

² In Excel using the formula "=RAND()"; e.g. we want to find a random point in a rectangle 100m by 50m, the formula is "=100*RAND()" and "=50*RAND()" to find **x** and **y** coordinates (GIS).

- 2. <u>Systematic</u> placement: plots regularly spaced along a transect or rectangular grid (occasionally hexagonal arrays ¹).
- E.g. can be used if we are interested in analyzing or quantifying *spatial* pattern.
- > The plot locations are *objective*.
- A disadvantage: it is possible that <u>periodicity</u> exists in nature, i.e. spacing of plots may <u>coincides</u> with this periodicity ².

http://ordination.okstate.edu/sampling.htm

¹ is exceptionally rare in nature;

 $^{^{\}scriptscriptstyle 2}$ "шестикутні масиви"