1. HOW TO BECOME A RESEARCHER?

The most important skills you need to become an excellent academic researcher.

1.1. Project Management

- Research project requires some degree of project *management* (PM).
- What does it mean?
- > PM means good *planning* 1.

To provide a step by step *plan* of how you intend to carry this out ².

¹to define your research in terms of achievable <u>aims</u>, the <u>time</u> and <u>resources</u> needed;

 $^{^2}$ in order to get external **funding** (without this skill your research project will not even get off the ground).

>	How to <u>succeed</u> ?
>	Try to <u>learn</u> as much as possible from them you are currently working with about the details of <u>planning</u> and <u>running</u> a project.
>	Set achievable <u>aims</u> and realistic estimates of <u>time</u> , <u>manpower</u> and <u>money</u> needed.
>	How to <u>plan</u> research effectively?
>	A research <u>proposal</u> ¹ (headings), e.g.:

 $^{\mbox{\tiny 1}}$ a detailed description of the project you are going to undertake

- · <u>Topic</u>: this project will study...
- · Question / problem: to find out...
- · *Significance*: so that more will be known about...
- · *Primary resources*: the main data will be...
- · <u>Secondary sources</u>: additional data comes from...
- · *Methods*: the research will be conducted as follows...
- · <u>Justification</u>: the method is most appropriate because...
- Limitations: there are some matters that this methodology may not help me to explain. These might include...

Research plan.

January:

- · write research proposal;
- · literature review;
- · complete literature review and conduct pilot study;
- main data collection

February:

- · complete data collection;
- · analyze data;
- begin first draft
- · etc.

1.2. Handling budgets

How to manage a budget <u>effectively</u>?

https://www.debt.org/

- This is necessary in order to be able to <u>lead</u> your own research project.
- You might have administrative support to help you with budget, but the <u>final decision-making</u> and <u>responsibility</u> will come down to you.
- * Keeping a *regular check* on monies in and out is vital ¹.

¹ keep your eyes open if things appear to be going wrong. Make sure you match your research goals to the money you have been awarded.

- Do not <u>spend</u> more money than you can afford yourself.
- > But remember that the money is there to be spent 1.
- Make sure you keep good records of your <u>income</u> and <u>spending</u> 2.

² your university, funding body or the 'tax man' may want to see your records at any time.

https://www.thebalancesmb.com/

¹ you can not hoard it;

1.3. Team leading/managing

- → Good team leading is a <u>difficult</u> skill to achieve ¹.
- However a research project often requires the <u>assistance</u> of others ².
- How to <u>succeed</u>?
- > Two things are important:
- · how to get the *best* out of each of your workers (1),
- · how to make their working experience a *positive* one (2).

¹ due to a large degree of autonomy in the academic world: the freedom to design and carry out organizational and financial competences and capacities;

² colleagues, administrative staff etc.;

→ You need to be a good *communicator* ¹.

Assessing your colleague's needs and vulnerabilities /v^ln(ə)rə'bɪlɪti/ is *essential* ².

https://www.proofhub.com/

¹ e.g. asking each person to play their part is vital, but so is listening to them, asking for their feedback on decisions or asking what is wrong if they are not happy;

 $^{^{2}}$ by doing so you will be able to lead them as a $\underline{\textit{team}}$.

1.4. Handling data ¹.

- > <u>Data</u>: a <u>collection</u> of <u>numerical facts</u> regarding a particular type of info...
- > Data / results you get from your project will *vary widely* 2.
- You need to be able to handle large amounts of data *efficiently* and *effectively* ³.

Without this skill you will never get to the exciting **stage** of actually **analyzing** your results;

efficiency is the ability to produce result in the "best" way; effectiveness is the ability to produce a
"better" result.

¹ the process of ensuring that research data is <u>stored</u>, <u>archived</u> or <u>disposed</u> off in a safe and secure manner during and after the conclusion of a research project.

² e.g. *results* from exp. within a *lab*, from work / observation in the *field*, in a *library*, etc;

 $^{^{3}}$ in a <u>well-organized</u> and <u>competent</u> way and in such a manner as to achieve a desired <u>result</u>.

How to handle data <u>successfully</u>?

- You need to be well *organized* and *planning* ahead ¹.
- > *Lose* any work/data due to incompetence or disorganization *unacceptable* ².

How to <u>avoid</u> it?

- · design and set up your database <u>now;</u>
- · organize <u>storage</u> for hard copies of raw materials and <u>catalogue</u> them clearly;
- · keep *records* of who is collecting what as you go along ³, etc.

¹ even if you not exactly <u>sure</u> of what you will produce, you will know what sort of data storage you need (electronically and on paper), so <u>organize</u> this <u>immediately</u>. Otherwise you will not able to analyze your results.

² it is wasting of time and money — no one can afford it;

³ when it comes to writing up your research later, you have all the answers you need.

How to *organize* folders and files?

- > <u>Systematically</u> managing folders:
- · saves time and effort;
- · simplifies the use (collaborative projects);
- · protects your folders and files from accidental clean-up.
- Hierarchical structure of folders 1:
- ▶ Develop <u>standards</u> early in the project ².

https://collegeinfogeek.com/file-folder-organization/

¹ structure by topic, data type etc;

² use these standards consistently within a project.

1.5. IT skills

https://www.hosting.com

- > IT skills are *necessary*.
- > When you running of your own research project it is *unlikely* you need to be an IT *expert*.
- Still, there are always new <u>methods</u> or <u>packages</u> to learn about, so don't stop 1!
- > Think how to *develop* your IT skills to present your work in a better way.
- > IT never stands still, there is always a way to *improve* your skills even further.

¹ e.g. any data *collection* or *storage packages* that would help your research that you are unfamiliar with; or any *analytical tools* for working with large amounts of data?

1.6. What scientists do?

- 1. Scientists see the world *differently* than we do.
- 2. Scientists <u>analyze</u> problems and then make <u>investigations</u> and/or conduct exps. to discover <u>new</u> info.
- 3. They *order* and *explain* this info. in a synthesis by producing *theories* of how the world works.
- 4. *Theories* are the result of "*combination*" what we *think* 1, and what we *see* / *measure* 2.

¹ what we **know**, our previous **theories**;

 $^{^{2}}$ our data, obtained in e.g., ecological field exp.,vegetation survey / analysis, and to $\underline{\textit{understand}}$ how theories are constructed with info. obtained by using them.

- 5. It takes *effort* to become *proficient* in particular techniques of investigation.
- 6. What is the *challenge* we face?

Theory and data are *interlinked*, and this can strongly *influence* what we find out ¹.

7. This is why problem *analysis* is so *important* at the start of research.

¹ even when we think we are approaching new problems, maybe not?

https://www.tweentribune.com

1.7. How scientists think?

- > To become a scientist you need *critical analysis* /*thinking* (CA/T) and *creativity*.
- > CA/T: the ability to think *clearly* and *rationally*, *understanding* the logical connection between ideas ¹.
- CA/T: we <u>must</u> continually apply to make definitions <u>exact</u> and <u>unambiguous</u> ², and assessments *unbiased*.
- We <u>define</u> our ideas as a <u>theory</u> (1); <u>develop</u> new ideas from the <u>theory</u> (2); assess those ideas using measurements (3); and <u>redefine</u> the <u>theories</u> in a new synthesis.

¹ it is a process of asking questions about something, e.g.: how it looks?; how it works?; why is that so?; where is the evidence?; how good is that evidence?; is this a good argument?; is it biased? ('bīəst); is it verifiable?('vɛrɪfʌɪəb(ə)l); what are the alternative explanations?

² not open to more than one interpretation.

- > <u>Creativity</u> (in science): the ability to <u>create</u> / <u>generate</u> new ideas and new connections between <u>ideas</u>, and <u>ways</u> to solve problems ¹.
- You can be <u>analytic</u> without being <u>critical</u>, but you can't be <u>critical</u> without being <u>analytic</u>.
- > Ecology is an interesting, but <u>difficult</u> subject ².

¹ an idea that is **novel**, **good**, and **useful**, <u>b</u>ecause you can create something which is not very useful or it just won't work well;

² related to analysis or analytics (separating something in into component parts);

³ many of its valuable concepts require many measurements.

Summary:

- 1. Scientists make *observations*.
- 2 . They ask *questions* about what they observe.
- 3. They make *predictions* about the cause (k):z) of the things that they observe.
- 4. Their *predictions* are based on *evidence* that can be *measured* and *tested*.
- 5. They <u>test</u> their <u>hypothesis</u>.
- 6. They *communicate* their *results* to their Peers.