

Editor
Oktay Şahbaz

INTRODUCTION TO UNITY

 A REAL-TIME DEVELOPMENT ENGINE
With Applications for Mining

 Kaan Erarslan

Dall.E

1st Edition

INTRODUCTION TO UNITY

A REAL-TIME DEVELOPMENT ENGINE

With Applications for Mining

Kaan Erarslan

INTRODUCTION TO UNITY

A REAL-TIME DEVELOPMENT ENGINE
With Applications for Mining

1st Edition

Kaan Erarslan

Editor

Oktay Şahbaz

1

PREFACE

In the first quarter of the twenty-first century, computer electronic hardware and software are

developing at a dizzying pace. A large technological matrix is emerging with artificial intelligence, deep

learning, the Internet of Things (IoT), smart systems, and visual communication elements. Visualization

and imaging technologies continue to develop as an independent area and a component of this large

matrix.

Computer-aided modeling, visual communication tools, and classical methods provide extraordinary

designs and products. In the last quarter century, one of the breakthroughs that have affected our lives

has been the platforms called real-time development (game) engines, which generally appeal to every

professional discipline and business area. It is a useful and empowering new tool for visual design and

application developers to have in their software toolbox.

Developments in Virtual-Augmented Reality (VR-AR) and Serious Games are the subject of many

innovative studies in educational curriculum and design, and their positive contributions are revealed

by scientific research.

Educational materials developed in this field can be used on computers, the web, mobile devices,

special headsets, and smart glasses. Therefore, all device options with their unique character offer a

wide working area for application developers.

Unity is one of the most important cross-platform software for developing applications in VR-AR and

Serious Games (Gamification). Unity, a real-time development engine with a history of nearly a quarter

of a century, is software that can be used to develop all VR-AR and Serious Game applications. Unity

offers application opportunities in all educational disciplines with these features. For this, Unity

knowledge and engineering field knowledge is required.

"Introduction to Unity, a Real-Time Development Engine with Mining Applications" aims to provide

the basic knowledge and applications in these subjects. The focus is on the visual design and

application aspect rather than game development. Educational materials are mostly video-based visual

materials and limited written documents due to the visual nature of the subject. In the last decade,

many comprehensive and detailed video documents have been prepared in this field. It is possible to

access the training records, which are paid or free, on the Internet. In fact, the most important source

in this field is the constantly developing visual and written archive on the internet. Written documents

may become outdated because of developments in computer software. However, these notes have

been prepared to provide a written document about general information and some applications in a

way that is suitable for those learning from scratch.

In the book, Unity essentials are explained, as well as general information about C# coding is also

provided. Virtual and Augmented Reality topics were discussed. For the training to be successful,

application studies and video materials should be considered together with the presented tutorials. In

other words, practice studies, videos, and written documents are all components of a whole, parts of

understanding the subject better and being successful. Apart from this, the most important key to

success is individual interest, motivation, and efforts during and after the training process.

This book includes basic information about Unity, a real-time development engine, and its applications

in mining engineering. The book, which consists of tutorials, also has the feature of being educational

material.

2

Acknowledgments

Acknowledgments are extended to the European Union, Brussels for supporting the 101082621-

EMINReM-ERASMUS-EDU-2022-CBHE “Master Program in Eco-Mining Engineering and Innovative

Natural Resources Management (EMINReM)” project and to the Kütahya Dumlupınar University

Scientific Research Projects Unit for providing laboratory facilities with the “Search and Rescue

Training in Mines Using VR/AR Technologies”-DPÜ-BAP 2022-63 project.

Files in Share

The course book, asset packages, C# scripts, materials and video tutorials are presented in the folders

and files.

https://drive.google.com/drive/folders/156AOkT8JP6khzlcnr02u7BzcIzeWZnjC?usp=sharing

3

Table of Contents

PREFACE .. 1

Acknowledgments ... 2

Files in Share .. 2

INTRODUCTION ... 6

1. INSTALLATION OF NECESSARY SOFTWARE .. 7

1.1.Unity 3D installation .. 7

1.2.Java JDK ... 9

1.3.Android Studio .. 9

1.4.Xcode for IOS Systems .. 10

1.5.Vuforia .. 11

2. UNITY PANELS ... 12

2.1.Using Unity 3D Panels ... 12

2.2.Game Tab/Mod ... 16

3. SCENE DESIGN ... 18

3.1.Adding a GameObject ... 18

3.2.Object Properties ... 19

3.3.Materials .. 21

3.4.Lights .. 25

3.4.1 Point Light ... 25

3.4.2 Spotlight ... 26

3.4.3 Area Light .. 27

3.4.4 Reflection Probe ... 28

3.4.5 Light Probe Group .. 29

3.5.Rigidbody ... 30

3.6.Physic Material .. 32

3.7.Particle System .. 33

4. C# SCRIPT CODES FOR UNITY.. 39

4.1.Basic C# Information ... 39

4.2.C# SCRIPTS IN UNITY ... 44

4.3.Console Messages ... 47

4.4.Variables .. 51

4.5.Methods/Functions ... 53

4.6.Arithmetical Operators ... 55

4.7. Conditional Statements and if statements .. 57

4

4.8.Array .. 60

4.9.List Variables .. 61

4.10.Basic C# Coding for Unity .. 65

4.11.Object and Component Access ... 68

4.12.Collision/Interaction of Objects in Unity – On Collision .. 73

4.13.Adding Gestures with Mouse and Keyboard .. 79

4.14.Controlling and Moving Objects ... 82

4.15.Interacting and Animating with Rigidbody... 86

4.16.Activating/Deactivating Objects (SetActive) and Destroying Objects (Destroy) 88

4.17.Object Control with Mouse ... 90

4.18.Cloning Objects – Prefab and Instantiate ... 92

4.19.Adding Objects with Instantiate Coding – Spawn .. 93

4.20.Raycast – Collision Control by Ray Spreading .. 107

4.21.Ray Emission from Camera ... 111

4.22.Ray Propagation from Mouse ... 113

4.23.FPS/P (First Person Shooter/Perspective) Applications ... 114

5. ADDING SCENE OBJECTS AND ASSET RESOURCES ... 127

5.1.Unity Asset Store ... 127

5.2.Sketchfab ... 127

5.3.GrabCAD, Rigmodels and 3DWarehouse-Sketchup ... 127

5.4.Terrain .. 128

5.5.Terrain + Standard Assets Using Unity Asset Store .. 136

6. DEPLOYING PLATFORMS .. 143

6.1.Build Settings ... 143

6.2.Cameras ... 146

6.3.Parent Child Relation ... 148

6.4.Skybox .. 148

6.5.Adding Audio and Video files .. 150

6.6.Animation .. 153

6.7.Switching Between Cameras in Unity ... 158

6.7.1. 1st Method ... 158

6.7.2. 2nd Method .. 163

7. LIGHT AND TEXTURE WITH URP ... 167

7.1.Universal Render Pipeline (URP) – Post Processing Volume - Glow Effect 167

8. USER INTERFACE (UI) .. 173

8.1.UI Text-Button-World Space- Interface Objects-3D Texts ... 173

5

8.2.Switch between scenes-UI Button .. 179

8.3.UI Text – World Space ... 184

9. FPS VE TPS APPLICATIONS .. 189

9.1.FPS-First Person Shooter and RPG-Role Playing Game .. 189

9.2.TPS Third Person Shooter-Starter ... 194

9.3.Third Person Character Controller – Armature Change ... 199

9.4.Transferring Blender Designs to Unity .. 211

10. VIRTUAL REALITY – VR APPLICATIONS ... 216

10.1.Virtual Reality (VR) Application for Cardboard Devices ... 216

10.2.Configuring the HelloCardboard Scene .. 221

10.3.Moving in a VR Scene .. 230

11. AUGMENTED REALITY – AR APPLICATIONS ... 237

11.1.Augmented Reality – AR ... 237

11.2.Vuforia AR Engine .. 237

11.3.VUFORIA integration in UNITY project ... 245

11.4.Getting the License Key and Downloading Database from Vuforia to Unity 250

11.5.AR-Vuforia and Multi-Image Target ... 263

11.6.Deployment into Mobile Devices ... 287

11.7.Augmented Reality with Video Player .. 292

11.8.Vuforia AR – Ground Plane ... 294

11.9.Similar Examples for Mining ... 307

12. USE OF ANIMATION AND ADOBE MIXAMO CHARACTERS IN UNITY .. 309

12.1.Relevant C# Script Codes ... 329

BIBLIOGRAPHY .. 333

AFTERWORD ... 341

6

INTRODUCTION

Unity and similar real-time development engines are used to develop games, VFX movie scenes, and

science and educational materials. With its cross-platform feature, it is possible to develop

applications for many different device options, such as computers, mobile devices, game consoles,

virtual reality (VR) headsets, and augmented reality (AR) smart glasses.

Unity, which can be used in almost every professional discipline, has applications in education, fine

arts, health sciences, and engineering.

To become an educational material or field application developer in any professional field, it is

necessary to learn the basic information of the Unity engine first. This book, which is prepared based

on tutorials according to the subject titles for beginners, mining engineering, which includes many

disciplines from earth sciences to construction machinery, from electrical systems to office

management, from occupational health and safety to education, from management to labor law, has

been preferred as the application area.

Book content:

Installation

Editor's introduction

Physical materials

Solid objects and gravity

Particle system

C# basics

Basic C# coding for Unity

Collision control with C#

Object control with mouse with C#

Raycast C# coding

Scene design and adding objects

Cameras

Terrain design

Output for PC (EXE), Mobile (APK), VR Headset and AR Smart-Glass

Adding audio and video

Simple animations

Working with UI (User Interface)

Scene transitions with UI

First Person (FP) and Third Person (TP) applications for PC and mobile devices

Virtual reality (VR) applications (for Cardboard)

Augmented Reality (AR) applications (with mobile devices)

Using animation-animator in Unity with Adobe Mixamo library and C# coding

Open pit, underground mine, ore preparation-enrichment facilities, ventilation, various machines

sample application applications developed for the titles It is located as.

The book can be used as educational material for beginners as well as for teaching levels.

7

1. INSTALLATION OF NECESSARY SOFTWARE

Within the scope of the course, all the applications will be developed with the Unity Real Time

Development Engine. On the other hand, different software will be needed for the applications to be

developed as PC-based, Web-based, mobile and mobile-AR/VR.

The software that will be required for the course to be installed depending on the applications is listed

below:

1.1.Unity 3D installation

It is possible to reach the download page from the relevant page that will open after browsing with

Unity on Google or from the link https://unity.com/download

First, create a Unity account with the email you will use in all your work. Since the system matches

email accounts, it is important to have the same email account (i.e. Unity asset store).

Now we can download the Unity Hub program. This program plays a central role in all installation

and project operations. It is recommended not to use the beta trial version.

https://unity.com/download

8

On the Hub, you can make your first download by clicking the Add button in the Install section. The

system will recommend the version with LTS (Long-Term Support). Start installing by selecting the

2022.x LTS version.

Before installing, be sure to mark the following additional subcomponents:

Visual Studio 2022 Community

Android Build Support -> Android SDK & NDK Tools (for Android devices)

 -> OpenJDK

IOS Build Support (for IOS devices)

WebGL Build Support

On the Hub, it is possible to add another version by clicking Add from the Install tab. For older versions,

download archive selection should be made.

9

Unity's website will open, and you will be given the opportunity to choose a version.

For example, you can find and download Unity 2019.1.14. This version is still preferable for VR

(Virtual Reality) and AR (Augmented Reality) applications. However, it does not support the latest

updates.

1.2.Java JDK

If not installed with Unity, Java SE JDK must be installed manually. To do this, a search on Google with

“java sdk download” will reach the download page on Oracle's website. Windows users should

download and install the relevant package (zip or exe) from this tab. The macOS version must be

downloaded for the IOS operating system.

1.3.Android Studio

If the required components are not installed during Unity installation, Android Studio should be

installed for Android mobile applications. You can access the relevant page by typing “android studio

10

download” on Google to do this. From the table at the bottom of the open page, the latest version

for Windows or Mac should be downloaded and installed.

1.4.Xcode for IOS Systems

For compilation processes of IOS mobile systems, the XCode package should be downloaded and

installed. The relevant page can be reached by typing XCode in Google. First, it is necessary to create

a user account. At this stage, your Apple phone must be ready due to security protocols.

11

1.5.Vuforia

One of the pioneering companies that develops augmented reality applications is PTC. Mobile AR

applications are developed practically using a product called Vuforia. We can reach the download page

by typing Vuforia SDK download on Google. As a developer, download and install the package related

to Unity.

Make sure to create a user account in Vuforia. Although it is not compulsory, it is recommended to use

the same email address as Unity.

Vuforia is Unity's official partner for applications in augmented reality, specifically for the Hololens 2

headsets.

12

2. UNITY PANELS

2.1.Using Unity 3D Panels

First, a project should be started. To do this, select the Project tab on Unity Hub and perform the first

step of creating a new project.

If more than one version is installed, the version we want to use is selected first (currently

2022.3.1.50f).

13

Here, the templates for the version are listed, and the name of the project (Project name) and folder

(Location) are specified. By giving the name Project1 to the first project and specifying its folder, our

editor will be opened with Create.

The general appearance of the empty panels is as shown in the figure. In the upper left corner is the

project's name, Project1, and the SampleScene, which shows which scene it is in.

SampleScene name is given by the system. When you look at the scene sections, there is a window at

the top left that shows the scene named SampleScene and the objects (assets) in the scene, called

Hierarchy. Each asset (object) here can also be called a Game Object. When we right-click our mouse,

the objects in the menu can be added.

At first, there appears to be only a Main Camera and a Directional Light. The part where the scene is

located is in the window called #Scene.

In the section titled Project, there are Favorites, Assets, and Packages. Here are the files of the

objects and packages that will be added to the project to be added to the scene. All the movements

here are simultaneous and parallel with Windows Explorer.

The most important and frequently used subheading in the Project window is the section called

Assets because it is the section where all kinds of objects to be added to the scene are located. We

can think of these assets as various scene objects such as 2D, 3D objects, materials, sound, light, video,

effects, animation, C# codes, etc. A large window belonging to Assets is also positioned to show the

assets inside.

14

There is an asset search window just above this window. As can be seen in the figure, Scenes are

also assets.

The Inspector window is where we will make arrangements for each scene component, we select in

the Hierarchy window. There may be dozens of sub-parameters specific to each of the hundreds of

objects in Unity, and dozens of sub-parameters belonging to them. These will be visible in the Inspector

window.

We see the details of the Main Camera selected in our empty scene in the Inspector. Under the

checked part that shows that the object is selected and in use, there is the

Transform window where the objects in the scene, also known as Game Objects, are located, which

are basically located in most of the scene's (x, y, z) coordinates; Position, rotational angles; Rotation

and size scales; Scale..

Again, in the editor of the Main Camera, Inspector, there is a section where the Camera properties

are defined. Below is the empty audio editor, Audio Listener. Below that is the Add Component

button, which adds various properties to the selected object.

















 

15

When you examine the project's menus, you will see

File, Edit, Assets, GameObject, Component, Window,

and Help. The File menu includes options for scene

operations, file recording, project creation and

platform operations.

There are editor operations in the Edit window. The

main ones are copy, paste, select, play, freeze, name

and similar operations. The most important

operations are Project Settings, project-related

arrangements and Preferences, pre-preferences for

various settings.

The Assets menu is the section where transactions

related to assets are located. Here, there is a very

rich tab titled Create to create assets.

Also, the Import New Asset option is used to import a

new asset object (file). Packages prepared outside

Unity and in a format that Unity will accept can be

imported into the project via the Import Package tab.

The GameObject submenu is a menu we can use when

we want to add a new object, GameObject, to our

scene from the objects in Unity. The same operations

can be done in the Hierarchy window by right clicking

our mouse.

 The Component menu contains the content of the

Add Component key that we use to assign various

properties to objects.

In the Window submenu, the most important and

frequently used sub-tabs, in addition to window

arrangements, are Asset Store and Package Manager.

Asset Store connects to the Unity Asset Store web

page and allows us to include many free and paid asset

packages in our project. The other option is the

Package Manager option, which allows asset

packages to be managed and added to our project. Package Manager has an important function that

manages standard Unity packages and the assets we add to our assets via the Asset Store.

16

This section, which is a

general introduction, can be

understood by practicing

while developing a project.

The only way to understand

and learn menus, their

dozens of submenus, and

hundreds, thousands of

control parameters is to use

them in the project.

In conclusion,
Understanding and learning
Unity 3D will be the best
possible by following the
course, practicing the visual
video materials, and
applying them in person
due to the visual character
of this very comprehensive
program.

2.2.Game Tab/Mod

In addition to the #Scene window where stage design is done in Unity, there is also a Game window to

see what will be encountered when the game is started.

When the play button for this window is clicked, the display window belonging to the Game becomes

active. If the Play Maximized option is active, the game scene will cover the entire screen. The game

is closed by pressing the same button. The design page is activated by selecting the #Scene tab. It is

also possible for both windows to be active at the same time. For this, the Game tab is fixed as a

window in the desired position by dragging it. It can also be brought back to its previous position in

the same way.

17

The Game mode feature will be used continuously in future scenes, and its function will be better

understood.

18

3. SCENE DESIGN

3.1.Adding a GameObject

To add an object (GameObject/Asset) to the scene, internal or external sources can be used. First, in

our project named Project1, let's create some game objects from Unity's standard libraries in the scene

named SampleScene.

In the Hierarchy section, we can see the titles of the objects that we can add by right clicking our mouse

and the objects under these titles. Create Empty is used to add an empty GameObject that will be

used for different purposes. The most used object group is 3D Object - a 3-dimensional object.

As can be seen, under the 3D Object heading; Cube, Sphere, Capsule, Cylinder, Surface/Plane, Quad,

TextMeshPro, Rich Text Adding, and Ragdoll, creating a character that is designed with a joint

structure that we can move, Terrain, Terrain/Field Design, Tree Adding, Wind Zone, Wind Effect

Adding, 3D Text – 3D Text Adding subheadings are included.

The menu and submenu components that we will see in detail while creating a project are in the figures

below. These are, respectively, Effects, Light, Audio, Video, UI and Camera.

19

 -Effects- -Light- -Audio-

 -Video- -UI-User Interface -

3.2.Object Properties

Let's add a few objects under 3D Object to our scene. These will be a plane, a cube, a sphere and a

capsule, respectively. But first, let's add a Plane and a Cube one after the other.

20

When the Transform window is examined, it will be seen that both Plane and Cube objects come with

standard coordinates-Position of (0,0,0), angular rotation values-Rotation of (0,0,0) and scale settings-

Scale of (1,1,1). To change these values, the numerical values in the window can be changed.

Transform properties of objects can also be adjusted by selecting the shortcut keys located in the

upper left corner of the project window.

After selecting an object added to the list or an existing object with the mouse, if we hover over #Scene

with the mouse and press the F key, it will be possible to focus and approach the object.

Pan Move Rotate Scale

Rect- 2B

interface

tool
All in one Editor

21

In practice, the rotation of the scene is done with the right click of the mouse, the zoom in and out

with the rollers, and the Pan operation is done when the rollers are pressed.

Another issue is to clearly determine the positions of objects in the scene. For this, it is useful to use

direction arrows called Gizmo. As can be seen in the figure below, x-z is used to define the horizontal

and y-vertical directions.

By clicking on the green y-key, we can look at our scene vertically from the top and horizontally from

the sides with the red x-key and blue z-key. As a standard, a 3D image is given by taking perspective

into account. Pers (perspective) expression under the Gizmo shows this. By clicking on the Pers, the

image will be converted to Iso, or isometric format.

3.3.Materials

After creating objects, material is usually assigned to them. This can be a solid color, an image or a

texture file. For this purpose, let's right click on the Assets window.

A window will open with a click. When you select Create here, a sub-window opens, and a

comprehensive asset list appears. Since our goal is to create material, the Material option is clicked

from the list. After giving a name to our new material/material, we can move on to editing information

22

about this asset in the Inspector. Our material is opaque and white by default. Let's check the white

box in the Main Maps window to determine the new colon.

Let's specify the color we want from the Color window that opens.

Now, it is possible to see the assigned color of the material that we created in the asset window. It

should not be forgotten that there will be no change in the scene unless our objects in the Assets

window are applied to the Scene. For this, we assign our color object in the scene by dragging it to the

Plane, for example, or by dragging it to the Plane in the Hierarchy.

23

It is possible to do the same process on other objects and with different colors if desired. Another way

of covering is to use a ready texture or image file. As can be seen, we added the Texture1.JPG file to

the Assets folder by dragging it to the folder on Windows Explorer or directly to this window. To cover

this material, we created a Material named kaplama1.

Now, let's drag our Texture1.JPG file to the box named Albedo in the Main Maps section in the

Inspector window of the kaplama1 material.

24

It is now possible to connect our material covered with Texture1.JPG to an object in the scene. To do

this, we simply drag our kaplama1 material onto our cube or the Cube on the Hierarchy.

The coating frequency can be changed by determining how many times the selected texture will be

repeated in the x and y directions on the Tiling.

25

3.4.Lights

The subject of light is a very comprehensive title in game engines and has a direct impact on quality.

Here, the addition of light types will be examined first. Standard light types are in the Light submenu.

Here, Directional Light was already the current light type. It will be possible to see other light types

more clearly by making the box for this inactive position in the Inspector or by deleting it.

Let's try Point Light, Spotlight, Area Light types in that order. Probe light types can be examined at a

later stage.

In this section, the information is given in a limited way due to its visual character and many light

settings are demonstrated in practice during the lesson.

3.4.1 Point Light

When Point Light is used, point light is applied to objects in a certain position, light color and intensity,

and the following instant images are obtained. The images are shown first in the scene and then in

Game Mode.

26

3.4.2 Spotlight

In this type of light, light application is achieved in a way that creates a cone.

27

3.4.3 Area Light

This type of light serves the purpose of illuminating a certain area. Area Light has Spot, Directional,

Point, and Baked options as Type and produces different results.

28

3.4.4 Reflection Probe

In this type of light, illumination and reflections are calculated via a probe.

29

3.4.5 Light Probe Group

Grouped probes can be used in stage lighting. Here, Halo from Effects is also added with Add

Component.

30

Lighting in Unity has very rich content and detail. For example, while creating a project, scenario-based

lighting can be designed by using special lighting mode templates such as Universal Render Pipeline

(URP), using Post Processing components, or by adding many special scene lighting features via

Package Manager within the project. In future topics, these issues can be included according to the

lighting needs of the project.

3.5.Rigidbody

By giving physical properties to objects, they can be made to move in game mode. When an object has

a mass like a solid object, it is expected to be affected by gravity and fall towards the ground

accordingly or rise upwards in the opposite case. Rigidbody is added to the object's properties by

clicking Add Component in the Inspector section of the object.

In the figure, the objects in the project are placed on top of each other. This image does not change

when Game Mode is on.

31

However, when a solid physical body property is added to the cube, sphere and capsule with the

Rigidbody, it will be seen that the objects move with the acceleration of gravity.

32

Here the capsule falls next to the cube, and the sphere also falls and continues to roll towards the end

of the floor.

3.6.Physic Material

In order to move the physics properties to a higher level, it is necessary to define a special material

type, Physic Material, and assign/bind it to the object. To do this, open the menu with the right mouse

button in the Assets window. Select Physic Material from Create.

After naming the Physic Material as ZiplayanTop, let's edit its properties in the Inspector.

33

If we want the sphere to bounce continuously, we must change the friction settings of the physics

material and drag this material to the Sphere, that is, to our sphere. In game mode, we can see that

our sphere (ball) is constantly bouncing.

3.7.Particle System

One of the most functional objects is the Particle System – particle/particle system. In order to better

understand the subject, it is possible to proceed with an example study in the form of fire burning. For

this purpose, a few cylinders were laid on their sides and painted with brown material to make wood

appear.

Right-click on our mouse in Hierarchy and select Effect -> Particle System. This object is designed to

automatically scatter particles around.

34

There are many settings in the Inspector for Particle System. Let's examine the most important ones

here. It is possible to go into more detail and apply them during the course.

Duration determines the time the

particle will appear. Looping

ensures that particle production

continues in a cycle structure.

Start-Lifetime regulates the

particle life, Start Speed regulates

the particle speed. Start Color

determines the initial color of the

particle. This color can be changed

to a light red or orange color for a

flame image. Gravity Modifier

regulates gravity. A value of zero

ensures that the particle rises as

standard. Negative values ensure

faster rise. However, positive

values mean that the particles

return to the ground. In some

applications, if the particles are

desired to fall, this value should be

made positive.

35

When we scroll down in the Inspector, we

will see the Emission settings. Rate over

Time determines the number of particles to

be produced per second. In the Bursts

section, it is possible to obtain an explosion

effect by determining which number of

particles will be released at which time with

the + button.

Shape determines the volumetric shape in

which the particles will spread.

Color over Lifetime, Renderer and dozens of

settings and their sub-settings can be

changed to observe the results. Such

changes can be made until the desired image

is obtained.

In the Color over Lifetime setting, the color

change and transparency level can be

determined from the beginning to the end

moment.

When specifying color, if Gradient - gradual change is selected, there are two settings in the window

that opens: Color and Mode. The first and last color of the particles are determined by Color, and the

Alpha percentage in Mode determines the transparency levels. If desired, the intermediate color and

transparency level can also be assigned.

36

A flame image should be used to capture a more realistic image in the flame image. A flame image can

be downloaded to the Assets section by searching for flame texture on Freepik and similar sites. Some

presets are required to use this image.

First, a flame image is placed in the Albedo of a Material in the Assets section. However, this image is

set to Shader -> Standard. This needs to be made compatible with the Particle System.

Shader > Legacy Shaders>Particles>Additive selections should be made for this. The result is more

realistic.

37

Or, from Main Camera -> Clear Flags -> Solid Color option, a solid color can be selected instead of the

Skybox in the background. This will give us a different image.

38

With the Particle System, many different effects can be developed that produce particles downward,

upward. Lateral directions depending on the scenario and need.

Another example is the scene of a truck that crashed into a mine, and its engine caught fire.

39

4. C# SCRIPT CODES FOR UNITY

This section contains introductory information for those interested in coding. Unity is a real-time

development engine based on the C# programming language. This language is used in coding (script)

in the developed computer, mobile device, VR/AR applications. This section covers the most basic C#

coding that may be required within the course scope.

Let us state that our aim will be more about Unity-specific structures and the developed command

library over the years rather than teaching the C# language. In addition, even if it is ready, code files

will be used within the scope of the course. Therefore, Unity C# basics are briefly discussed to give an

idea. Other coding information within Unity applications will be briefly emphasized.

4.1.Basic C# Information

After the scene preparations, doing C# coding to develop various events will be necessary. If the codes

are not connected to the scene and the objects that make up the scene, the game will not work. For

this, both coding and connections must be known.

C# gives console and visual outputs. There is a window for Console outputs (DOS screen) in Unity.

Visual outputs are already observed movements and actions in the game. With coding, we can access

every object and its sub-areas and settings on the Inspector screen.

Visual Studio 2022 had already been installed in Unity for C# coding. However, if Visual Studio was not

added while installing Unity, open the Unity Hub and go to the Installs section.

Select the settings button in the upper right corner of the Unity 2022.3 version window. From the

window that opens, select the Add Modules tab.

40

Here, Visual Studio will automatically be selected if it has yet to be chosen. After that, the installation

process continues. Also, Add Modules is used when there is a module that you want to add that has

not been installed before, such as the IOS module.

To access the code files from Unity, double-click on the script file is enough. However, a definition is

required to do this if Visual Studio was added later. The connection is established via

Edit>Preferences>External Tools.

The C# program opens with a certain template and is ready for the codes we will add. The script file's

name is also the class structure's name. Class is the most basic building block of object-oriented

programming and is an object that contains variables, methods and functions and is designed to be

used and accessed repeatedly. Adding MonoBehaviour at the entrance inherits the most basic C# class

structure found in the C# library with the opportunities it provides. Let's look at the general view and

template.

41

C# codes-scripts consist of blocks. Commands other than library and variable definitions must be

written in a block whose boundaries are defined by { } braces.

Variables are used to carry parametric values inside or outside the block. Space is allocated in memory

according to their types. These memory areas are assigned values according to their numerical, verbal

or type.

The code developer determines variable names. While making a definition, many special characters

(i.e., ö, ş, ü, ğ, ı, ç, à, ä, å, ã, ñ, ß, ë, ÿ), spaces, and dashes, cannot be used. One of the most important

elements besides variables is functions-methods. Commands are written into existing or created

methods according to the character of the software to be developed.

42

C/C++/C# statements are terminated with ;. Missing this character is an error source that will prevent

the program from running.

The output of a script that gives Console output will be seen in the Console window in Unity.

43

Since the subject of coding is very comprehensive, existing coding examples will be repeated and better

understood over time. Since this is not the main goal of this course, only quick and superficial

information is included. However, it is useful to briefly explain two very common patterns such as if()

and for().

In the program flow, some operations will sometimes develop conditionally. If, else and if-else

conditional statements are created to express this. General template:

if(condition)

{

command(s)

}

Here, the part inside the if block will be executed if the condition expression is true. Example:

int a, b=5;

if(b>0) { a=b*b; }

else pattern is used to code situations that only have two possibilities, while if else conditional

sentences are used when there are more than two situations.

If the same process is repeated many times in coding, they are included in repeating patterns called

cycles. Although there are different methods for these, the most commonly used is for block patterns.

for(initial value; final value; increment/decrement amount)

{

command(s)

}

44

Example:

x=0;

for (i=1; i<=100; i++)

{ x=x+i;

 print(x);

}

Here, the value of the integer variable x, which is initially zero, is increased one by one until it reaches

100, and each value is printed in the Console window. If you notice, the variable i is used as a counter

and also as an increment element in the command. In the block, i=1; is assigned as the first value, it is

increased one by one with the command i++; and if it is less than or equal to 100 with the expression

i<=100, the command(s) in the block are executed again. The increment and print command lines are

written once in the block and executed 100 times.

It will be possible to see C# codes in various trainings. One of the most important learning methods is

to repeat these codes first and gradually enter the process of understanding, comprehending,

interpreting and producing by developing basic knowledge.

After the basic part and code composition information, let's see the use of C# Script in our Unity

project.

Since the C# Unity library has a large volume, let's start from the simplest level of codes and progress

by adding new information according to specific needs.

4.2.C# SCRIPTS IN UNITY

Let's start seeing how C# information can be used in Unity. For this, we will create a new project.

Create a code file with Create>C# Script by clicking the right button of the mouse in the Assets

section.

45

The point to be noted here is that special characters should not be used in file naming, similar to

naming web pages. In our study, the C# file was named ConsoleMessage.cs. The file will be opened

in the Assets window with the standard C# template, and accordingly, the class in the program will

have the same name as the file name.

It is very important that the file naming process is synchronized with Create>C# Script and that the

class name in the created file has the same name. If the file name and class name are not the same,

the program will be incorrect. If, by mistake, the C# file name and the class name are different, the

class name must be changed and matched according to the file, or the file name must be changed

according to the class name.

46

The file content is displayed in the Inspector section. This template code consists of a class

ConsoleMessage block and two methods (functions) named Start() and Update().

The C# code sentences to be used in the program are written inside the class, and method (function)

blocks are created below it.

As seen here, the methods (functions) are automatically named within the framework of this

template in which the program will be written, and their boundaries are determined with {…}.

In order to access the commands in the library, the program requires using the files that contain

them. Therefore, our template starts with using … statements and access is provided to the library

commands.

47

Now let's start developing simple programs on this template.

4.3.Console Messages

As the name of the project suggests, our program aims to send messages to the console window of

the Unity editor. In other words, messages will be sent to the screen in the codes, and these will be

displayed in the Console window. Let's double-click on the ConsoleMessage.cs file and open it in

Visual Studio 2022.

48

The content we see in the Inspector is seen in the compiler editor for processing. Start() method

becomes active when the program runs and runs once. Update() runs 24/60 times per second,

depending on the screen frequency. Here, it will be enough to write it in Start().

Debug.Log() command is used to send a message to the screen (Console). print() command can also

be used for the same purpose.

To use commands, we can write our message between two “….” For example:

Debug.Log(“UNITY”);

Command sentences must end with ;. Write the command and save it by pressing Ctrl+S or clicking

on the icon .

When we return to Unity, this change will also be visible in the Inspector.

49

In order to see the result of a line we added to the template, the project and the code file must be

linked. For this purpose, let's click right and add an empty object with Hierarchy>Game Object. This

object is named myMessage. Let's drag the ConsoleMessage.cs file and link it to this object.

Now, click on Play Mode and see the message we wrote at the bottom of the screen. The message

can also be viewed in the Console section.

50

Add another line to the program. This time, see that we can also transfer the message with the

print() command.

Save and return to Unity and see the result in the Console window in Play Mode.

51

4.4.Variables

As stated in the general definitions, program variables are program elements that will carry numbers

or various values. Variables are memory location names that are allocated space in memory and can

take on multiple values within the program flow, and these assigned values can change.

Variables have types according to the information to be assigned and are categorically defined as

public and private, which basically means that they are open or closed to external access.

Immediately following this definition is the declaration type: int (integer), float (real number), string

(character), Vector3 (3D vector coordinate information), etc. For example:

public int sayilar;

private float angles;

Within the framework of visual programming logic, it is possible to define a variable for each

parameter in the Inspector section of the editor and assign values to these fields. A variable is

normally considered private unless it is described in front of another definition.

Let's do some applications in our project. Define two variables named integer_number and

real_number, the first one is an integer, and the second one is a real number. Also, assign the initial

values to the memory in the definition line. In real number assignments, the expression f is added to

the end of the number, meaning float.

Now, save and return to Unity and run Play Mode. If you pay attention, you can see that the publicly

defined variable has become accessible to outsiders in the Inspector. It is also possible to enter a

new value in this field.

52

The results of the four message commands in the program will be displayed in the Console window.

A character (string) variable can also be combined with numerical expressions and displayed on the

screen. The + operator used here is not only for arithmetic addition but also for using two values

together.

53

Let's give an example of arithmetic operations. Here, we define a variable in the Start method

(function) and assign the sum of the values of the two previously defined variables.

4.5.Methods/Functions

Apart from the Start() and Update() methods (functions), we can also develop our methods. In these

function blocks, which have characteristics such as type, name, and parentheses, pre-definitions such

as public, private, and type definitions such as int, float, and void can be made.

In order to call and use the created methods in the program flow, it is sufficient to write their names.

A void-type method is not expected to return a value when it returns to the line it was called. It is not

necessary to transfer data to these types of methods. However, in methods with a type such as int or

54

float, it is expected to produce a value of this type when it returns to the line it was called. In

addition, there is a value transfer for the method to be processed.

Now, remove some lines from the same project and focus on this issue. Leave only the integer

variable in the variable definition. Create a void add() method inside the Start() method.

integer_number variable value is transferred to this method. In the method definition line, a local

variable called int tam_number is defined to hold this transferred value. tam_number value is directly

equivalent to integer_number, i.e. 111. After defining another variable named int plus in the method,

the integer_value + 5000 operation is performed for the value assignment. The result, 5111, is

printed on the console.

If the add() function had been int add() instead of void, the same result would have been obtained.

However, the int add() function was expected to return a value with the return command.

55

We can achieve the same result by performing more variables and operations. The basis of object-

oriented programming logic is to create modular program parts. Complex integrated and iterative

software provides great savings from repeating the same operations over and over again.

4.6.Arithmetical Operators

Arithmetic operators are used for mathematical operations. These are basically four operations and

some additional special operators:

Operator Function Example C# code

+ addition x=x+y; ≡ x+= y;

- subtraction w=w-q; ≡ w-=q;

* multiplication c=c*(a+b); ≡ c*= (a+b);

/ division (quotient) d=d/5; ≡ d/=5;

++ add 1 x++; ≡ x=x+1; ≡ x+=1;

-- decrease 1 x--; ≡ x=x-1; ≡ x-=1;

% mod operator (remainder) z=10%3 (remainder 1)

Also, some commonly used C# Mathf class methods are listed:

56

Function Math
function

Meaning Example C# code

Sqrt(x) √𝑥 Square Root y=Mathf.Sqrt(x);

Abs(x) |𝑥| Absolute Value z=Mathf.Abs(x+y);

Pow(x,y) 𝑥𝑦 Power w=Mathf.Pow(x,y);

Tan(x) tan(x) Tangent angle=Mathf.Tan(x*(Mathf.Pi/180)); // radian↔degree

Atan(x) arctan(x) Arc Tangent val=Atan(angle*(180/Mathf.Pi)); // radian↔degree

Let's re-arrange the C# codes of our project in Visual Studio. Here, the square root of 9, the absolute

value of -5, the 2nd power of 4 (square of 4), the tangent of 45, and the arc tangent of 1 are

calculated. In the C# programming language, angles are in radians. If we want to work in degrees, we

need to convert from radians to degrees and from degrees to radians.

*Yaklaşık: approximately

Yaklaşık 45°

57

4.7. Conditional Statements and if statements

In some cases, operations may or may not be done in the program flow. We need to reflect these in

the codes with conditional statements.

if(condition)

{…}

In the general template, we can write as follows: if the condition in the parentheses is met (true), the

part inside the if block is executed. Otherwise (false), these lines will not be executed.

It is necessary to make comparisons in conditional sentences. Relational operators are used for this

purpose:

> greater if(a>b)

>= greater or equal if(x>=y*z)

< smaller if(alfa<90)

<= less or equal if(u+w<=p/q)

== equal if(b==c*c)

!= not equal if(b*b-4*a*c != 0)

Now, add sample if statements to the previous program and see the results:

58

In cases where there are multiple conditions, it is necessary to use logical operators to connect these

conditions:

Operator Meaning Example C# code

&& and if (a+b >= c+d && a*a<(c/d)) { … }

|| or if(b*b-4*a*c > 0 || a+b+c<d*e) { … }

! not if (!a) { … } // converted to true>false and false>true

Let's add an if statement to the project code that connects three conditions with && and see that a

message is sent to the console because all of them are true.

59

For the expressions connected with && to be true, all of them must be true. For only one of the

conditions associated with || to be true, it is enough for the true result to come out of the

parenthesis and for the operation (block) connected to the if statement to be executed.

The code information is provided below in text form that allows copy/paste.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ConsoleMessage : MonoBehaviour
{
 float number1 = 4f, number2 = 2f;
 float number3 = 45.0f;
 float number4 = 9f;
 float number5 = -5f;

 // Start is called before the first frame update
 void Start()
 {
 double x = Mathf.Sqrt(number4); Debug.Log(x);
 double y = Mathf.Abs(number5); Debug.Log(y);
 double p = Mathf.Pow(number1, number2); Debug.Log(p);
 double ang = Mathf.Tan(number3 * (Mathf.PI / 180)); Debug.Log(ang);
 double val=Mathf.Atan(1)*(180/Mathf.PI); Debug.Log(val);

 if(x<y) { double z= x+y; Debug.Log(z); }
 if(p>=y) { double q = p * y; Debug.Log(q); }
 if(ang==1) { Debug.Log("Tan"+number3+" = "+ang); }

 if (x < y && p > y && ang < x * y) Debug.Log("ALL CONDITIONS ARE TRUE");
 }

 // Update is called once per frame
 void Update()
 {

 }
}

60

4.8.Array

They are variables that can carry more than one data and have space made available for them in

memory. Many similar data in accordance with the matrix structure are addressed and processed

with index values within the group they belong to.

An array variable can be one or more dimensions. To allocate space in memory, there is a difference

between square brackets [] in the definition sentence and a field size assignment with the new

command.

int[] say;

say= new int[5];

In the example, instead of the variable named say having a single value, it is specified as int say; and

it is an array as int[] say; and then five integers are allocated in memory. The values in an array

structure connected to the same variable name are separated from each other according to their

addresses/index numbers in the array. Although this index sequence number is from 1 to 5 in normal

mathematical matrices, the index number starts from 0 in C#. Therefore, the sequence numbers will

be between 0-4.

The following example shows which sequence number element of the say variable the value

assignment is made to.

say[0]=3;

Here, the index value is 0. Its mathematical equivalent is the 1st row.

If we want to print to the console, it will be written in a similar way as

Debug.Log(say[0]);

If the public property is given when defining the say variable, it can be accessed from the editor, size

assignment and even element data entry can be done from here.

61

Here, both the number of elements of the say variable can be determined, and subsequently, data

can be entered into the field that will be opened as many times as the number of elements

determined.

For example, the number 5 was entered, and as a result, space was opened for 5 elements from the

index value 0 to 4, and the initial value 0 was assigned to all of them.

4.9.List Variables

List variables have similar properties to array variables. However, it is not necessary to enter the

matrix size (number of array elements) at the beginning. It is a structure that creates space for itself

in memory as data is entered. The number of elements can increase and decrease. They are not

fixed-sized like arrays but have a dynamic structure.

When making a definition, memory is created with the list declaration and new command.

List <int> rakam;

rakam= new List<>();

62

here, the variable type is declared.

rakam.Add(10);

rakam.Add(20);

Add command is used to transfer data, and both spaces are made available in memory and data is

assigned, respectively. The array structure and indexing method are the same. If we want to get

output,

digit.Count and count.Length commands can be used to determine the number of elements in the

list and array.

63

To remove an element from a list,

rakam.Remove(assigned value);

or

rakam.RemoveAt(index number);

can be used.

After the deletion process, the index order of the elements after the removed element is re-

determined and the sequence number is updated.

Let's make an example where for structure we saw in the previous part of our topic loops between 0-

4 5 times, and the int i variable controlling the loop will be assigned a value that is 100 times larger.

64

Another important loop structure that can be used with arrays and lists is foreach. A variable of the

same type that can be used in our array or list is defined. The general template for our example is

stated as follows:

foreach (int val in rakam)

If we reflect it on our code lines,

// Value assignment
// Writing on the console

65

bool type variables can only take two values, true and false. Let's give an example with codes.

bool status variable is true if there are more than three numbers in the list. Otherwise, it is false.

4.10.Basic C# Coding for Unity

In the following parts of our topic, let's see the basic and frequently used information about Unity

objects and applications in C#. For this, let's start a new project. In the preparation phase, let's add a

Plane and a Cube to our scene.

66

Let's change the name of the Cube object to Box.

Let's create a new Tag named 3DGroup for our Box object and assign it.

The principle of matrix indexing starting from 0 is also seen here in the listing of the 3DGroup tag as

Tag 0.

67

Similarly, let's add a Sphere and a Capsule to our scene. Let's name them Ball and 3DOval,

respectively, and let's name their Tag 3DGroup.

Let's see the Name and Tag information of our objects as a diagram. Names are seen as individual,

and Tag information is seen as a common group name.

Name: Box

Ball 3DOval

Tag: 3DGroup

Name: Ball

Box

Name: 3DOval

68

As you can see, the names of the three objects in our scene are different, and their labels are the

same. Name and Tag are two different properties used to access the objects in the scene. Name can

be used as an individual assignment for each object. However, let's remember that the same names

can be given to different objects. Tag is generally labeled for grouping purposes.

In an application, for example, we may want to destroy each object based on its name, or we may

want to destroy objects that are members of a group collectively. In such cases, we will need to

access the Name or Tag information.

4.11.Object and Component Access

We need to access the object we want to process with code and the Component information in the

Inspector section. Hierarchically, we need to access the object first and then the Component section.

For example, we want to access the MeshRenderer component (Component) of an object. Below is

the access coding for two different situations.

In the first case, there is a C# file linked to the object. That is, the code file has already accessed the

object to be accessed.

gameObject.GetComponent<MeshRenderer>(); or in shorter writing,

GetComponent<MeshRenderer>();

We can access the MeshRenderer property of the object with command.

In the second case, we want to access the MeshRenderer component (Component) of a different

object in the scene that our code is not bound to. When the code file is not bound to this object, we

will need a more detailed description. At this point, we can use the Name property of the object.

GetObject.Find(“Box”).GetComponent<MeshRenderer>();

If we want to access all three objects, we can write our code using the common group Tag.

GetObject.FindWithTag(“3DGroup”).GetComponent<MeshRenderer>();

GetObject.FindGameObjectWithTag(“3DGroup”).GetComponent<MeshRenderer>();

Now, we can use this basic information in our Unity project. Let's create a C# Script to connect to our

Cube object named Box and open it in Visual Studio (here, the file is named BoxCode.cs). Let's make it

connected to our Cube (Box) object.

69

MeshRenderer Component contains settings related to the visibility of the object. The check box in

the Inspector>MeshRenderer window of our object named Box shows whether this feature is active

(true) or passive (false). Since it is currently active, the object is visible, and the box is ticked.

Let's make this object invisible. Unchecking the box means assigning the bool value called enabled

for MeshRenderer to false as the code equivalent.

GetComponent<MeshRenderer>().enabled=false;

Let's write this line in Visual Studio, save it and run it in Unity Play Mode.

70

As can be seen, the MeshRenderer check box became unchecked, and the Box became invisible on

the Game screen.

At this stage, let's access another object from our code file that it is not connected to and make it

invisible. We can use the information we saw earlier to reach the Sphere object, which we named

Ball.

GameObject. Find(“Ball”).GetComponent<MeshRenderer>().enabled=false;

71

Here, we first access the object named Ball with GameObject.Find(“Ball”) and the MeshRenderer

active/passive property with GetComponent<MeshRenderer>().enabled. We set it equal to false to

make it invisible.

If we want to make all objects with 3DGroup tags invisible, we can use our array variable and foreach

information since there is more than one object. Firstly,

GameObject[] objects;

Let's create an object matrix with a definition.

objects=GameObject.FindGameObjectWithTag(“3DGroup”);

Let's include all objects tagged with 3DGroup in the array with the coding,

foreach(GameObject obj in objects)

{ obj.GetComponent<MeshRenderer>().enabled=false;

}

-> Box
-> Ball

72

Let's uncheck the MeshRenderer property of the objects in the matrix with the conversion. Now,

let's turn it into a script in Visual Studio.

We can see that since the Tag value of the other three objects in our scene, except Plane, is

3DGroup, they all become invisible.

Let's do the same process with the for-loop pattern to reinforce our knowledge about array

variables. For this, use the foreach block,

let's make a comment line by placing it between /* …. */ and disable it. Then, create a for loop block

that will loop between 0 and objects.Length.

73

4.12.Collision/Interaction of Objects in Unity – On Collision

In this section, let's try to answer the question of how objects can collide or interact with each other

in our applications using code.

First, the Inspector content of our objects that will interact should contain Collider and Rigidbody

components. Collider means collider, and Rigidbody means a physical, rigid body that also has

gravity. Normally, the Collider property of cube, sphere and similar objects that we add with

Create>3DObject is assigned depending on the shape. Box Collider is also added while creating our

object named Box. Sphere Collider is directly assigned to the object named Ball, and Capsule Collider

is directly assigned to the object named 3DOval. A collider can be thought of as a wireframe

surrounding an object. If we want to change its shape, we can edit its borders, enlarge or reduce it

with the button .

Let's add Inspector>Add Component>RigidBody to our Box, Ball and 3DOval objects.

74

Translation:
SIMDI CARPTI (Now collided)

 CARPISMA BITTI (Collision ended)
 CARPISIYOR… (Now colliding)

Collisions can be in the form of a hard collision (Collider) and a soft collision (Trigger). For the type of

interaction between a person entering the water and the water, the Is Trigger □ box must be

selected.

Collision control functions/methods, included in the C# Unity Engine library.

OnCollisionEnter()

OnCollisionExit()

OnCollisionStay()

OnCollisionEnter() works once when first contacted. OnCollisionExit() works once when the collision

is over. OnCollisionStay() runs continuously during the collision.

Let's start the application in our Project and write the collision script file. Since we don't need the

Start() and Update() methods in these operations, we can delete them. Instead, let's write three

methods that control the collision and let's write our message with the Debug.Log command to

declare the stage where the collision occurred. The system assigns a collision variable in the

parentheses of the OnCollisionXYZ() methods. The information about the object that was hit is

stored in this parameter. It is possible to change the name of the variable if we want.

75

In Play mode, let's drag the capsule to our cube object, crash it and release it. The impact will knock

over the capsule with physical properties. In the meantime, messages will appear in the Console

window indicating that the collision has occurred, is ongoing and has finished.

If we want the capsule to tip over, click the X, Y and Z check boxes under

RigidBody>Constraints>Freeze Rotation.

76

Let's also see the soft collision. For this, make a small change in the code lines. With the same logic,

place the OnTriggerEnter(), OnTriggerExit() and OnTriggerStay() methods and the relevant

Debug.Log() messages.

Notice that in the OnTrigger commands, the variable definition in parentheses is Collider.

When we run it in Play Mode like this, we will still get the hard collision messages. In order to see the

result of the codes we added, we need to click the Is Trigger check box of at least one or two of the

objects that will collide. After this is done, the capsule that collides with the cube will give the soft

collision messages. It will also not fall over…

Translation:
SIMDI CARPTI (Now collided)
CARPISMA BITTI (Collision ended)
CARPISIYOR… (Now colliding)
SIMDI YUMUSAK CARPTI (Now collided gently)
YUMUSAK CARPIYOR (Colling gently)

77

We have stated that the variable that is automatically opened in our method carries information

about the collided object. To see it concretely, write the command

Debug.Log(collision.gameObject.name);

to the OnTriggerEnter() method.

Let's drag the cube into Unity again and collide it with the capsule. See the message in the Console.

Do not forget that the code file is connected to the cube, and the 3DOval information, which is the

object it collides with, comes to the Collider collision variable in the method.

If we can reach the hit object, we can also perform operations on it; for example, we can make it

invisible.

collision.gameObject.GetComponent<MeshRenderer>().enabled = false;

78

In this command, the gameObject to which the collision variable defined in parentheses is bound is

made inactive and becomes invisible.

As a result, we understand through a message that it touches the capsule, and we can see that the

MeshRenderer part of the capsule named 3DOval is invisible because it is unchecked.

If we want to make an object with a certain name invisible, we need to make a conditional

statement. Do this application on the sphere named Ball.

if(collision.gameObject.name==”Ball”)
{
collision.gameObject.GetComponent<MeshRenderer>().enabled = false;
}

79

Now, transfer it to a C# script file.

Here, when we touched the cube to our Ball object, it both gave a message and destroyed it.

However, when we touched the cube to the capsule a few times, it only showed a message but did

not destroy it.

4.13.Adding Gestures with Mouse and Keyboard

In the applications, it is a basic need for the user to enter data with the mouse and keyboard.

Considering the dynamics of the movement in the application process, it is understood that it should

be used in the Update() method.

80

It is common practice to detect whether a keystroke has been made on the mouse or keyboard in

Unity and to control it with if statements to react to it.

Frequently used methods for keyboard buttons:

Input.GetKey (KeyCode.button);

Input.GetKeyDown(KeyCode.button);

Input.GetKeyUp(KeyCode.button);

for Mouse buttons:

Input.GetMouseButton(#index);

Input.GetMouseButtonDown(#index);

Input.GetMouseButtonUp(#index);

We can write the first codes in our project.

For example, when the right arrow key on the keyboard is pressed, we can send a message to the

console to test that it is detected. For this,

if(Input.GetKeyDown(KeyCode.RightArrow)
 { Debug.Log(“ klavyenin sag tusuna basildi ”); }

if(Input.GetKeyUp(KeyCode.RightArrow)
 { Debug.Log(“ klavyenin sag tuşundan cekildi ”); }

Now, on Visual Studio:

GetKey and GetMouse: works continuously
GetKeyDown and GetMouseDown: works once when pressed
GetKeyUp and GetMouseUp: works once when pressed

#if the index value is 0, then left mouse button
#if the index value is 1 then right mouse button

Translation:

klavyenin sag ok tuşuna basildi

right-arrow key is pressed

81

If we add a third if statement as if(Input.GetKey(KeyCode.RightArrow)), it will give the message

Debug.Log(“keyboard right arrow key is being pressed”); (in English) if we press the right arrow key

(here, the screen message is given 352 times).

Translation:

klavyenin sag ok tuşuna basiliyor

right-arrow key is being pressed

Translation:
klavyenin sag ok tuşuna basildi
right-arrow key is pressed
klavyenin sag ok tuşundan çekildi
right-arrow key is not pressed any more

Translation:
klavyenin sag ok tuşuna basildi
right-arrow key is pressed
klavyenin sag ok tuşundan çekildi
right-arrow key is not pressed any more

82

Let's do a similar process for the left mouse button. The left button code was expressed as 0. Add to

our codes to declare the moment the left button is pressed and released and during the pressing

process.

Even a short press and release gives a total of 11 messages.

4.14.Controlling and Moving Objects

It is possible to access all Component properties in the Inspector section of an object in the scene

with C# codes. Inspector>Transform properties contain the most basic parameters considered in

components. These are Position (x, y, x coordinates), Rotation (axial rotation angles in x, y, z

directions) and Scale (scale values in x, y, z directions).

Translation:
farenin sol tuşuna basildi
left button of the mouse is pressed
farenin sol tuşundan çekildi
left button of the mouse is not pressed
any more

83

To make changes in this area, the transform.Translate() function will be used. In addition, by

accessing the Rigidbody component, movement control can be provided with the velocity() and

AddForce() commands.

Movement according to the object's coordinates,

transform.Translate(x,y,z);

or according to the coordinates of the scene,

transform.Translate(x,y,z,Space.World);

we can do it with command templates.

For example,

with the transform.Translate(1,0,0); command, 1 unit forward movement is provided on the X axis.

When we write this command in the private void Update() method, the movement occurs in the X

direction if we press the key. However, the movement speed may differ depending on the

configuration of the computers. To solve this problem and to ensure that the movement speed is

equal on each computer, the axial movement unit is multiplied by the Time.deltaTime time value.

transform.Translate(1*Time.deltaTime,0,0);

Let's apply this information to the codes connected to the object named Box in our project. If we

press the right arrow key on the Play Mode Game screen, we will see that the Box object moves

forward on its own X-axis.

84

For an upward movement, it is possible to write as

transform.Translate(0,1*Time.deltaTime,0);

for a downward movement, it is possible to write as

transform.Translate(0,-1*Time.deltaTime,0);

If we want to rotate the object, we must access the Inspector>Transform>Rotation parameter and

use the relevant command. Similar to the Position control, we can use the transform.Rotate(x,y,z);

and transform.Rotate(x,y,z,Space.World); template. For example, if we want it to rotate as long as

we press the right arrow key on the X-axis, we can write

transform.Rotate(1*Time.deltaTime,0,0);

However, since 1*Time.deltaTime will rotate very slowly, a value of 10*Time.deltaTime or higher

can be entered.

85

For the Scale operation, it will be necessary to write a different code than the other command lines.

We can use an expression of the Vector3 variable type and enlarge our Box object in all directions as

long as the right arrow key is pressed.

transform.localScale += Vector3.one*Time.deltaTime;

For scaling in certain directions, try the terms forward, up, down, back, left, and right instead of one

in the expression Vector3.one*Time.deltaTime. We can set up the equation with the - sign to shrink.

transform.localScale -= Vector3.one*Time.deltaTime;

86

4.15.Interacting and Animating with Rigidbody

Rigidbody is a physics component element. Let's continue our topic on Box, which is the object that

we connected to C# Script in the project. We added Inspector>Add Component>Rigidbody element

to our Cube object named Box. We will need to access this element (Component) with codes and

add GetComponent<Rigidbody>() and velocity function to animate it by giving it a speed value. It is

possible to set its speed with a multiplier value and Time.deltaTime.

GetComponent<Rigidbody>().velocity=Vector3.right*50*Time.deltaTime;

In order for this expression to take a 3D vector value with the term it is equal to, in the scene,

Vector3.right // 1 unit right on the X axis
Vector3.left // 1 unit left on the X axis
Vector3.up // 1 unit up on the Y axis
Vector3.down // 1 unit down on the Y axis
Vector3.forward // 1 unit forward on the Z axis
Vector3.back // 1 unit back on the Z axis

on its axis;
transform.right // X axis 1 unit right
transform.left // X axis 1 unit left
transform.up // Y axis 1 unit up
transform.down // Y axis 1 unit down
transform.forward // Z axis 1 unit forward
transform.back // Z axis 1 unit back

When we apply it to the script file, we can see the movement of the Box object when we press the

right arrow key. Here, we see that once we start the movement, it continues at a constant speed.

87

AddForce articulation can also be used to move with force application. Let's structure the command

to move the Box object up,

GetComponent<Rigidbody>().AddForce(transform.up*50*Time.deltaTime);

88

As long as we press the right arrow key, we see a movement that gradually accelerates and speeds

up.

4.16.Activating/Deactivating Objects (SetActive) and Destroying Objects

(Destroy)

We have seen that elements of objects such as Inspector>MeshRenderer can be active or passive. In

this section, let's see that the object itself can be made active or passive. An object can be made

completely active or passive by ticking the check box on the line with its name in the Inspector and

making it checked/unchecked. This is not a Component/element but the object itself.

89

When this box is deselected, the object is not deleted, but the object's visibility and all its

components become inactive.SetActive() is the control command used for this purpose.

The general form for making an object inactive is gameObject.SetActive(false); In the Play Mode

Game window, the Box object will be inactive and invisible.

In the case of SetActive(true), its visibility and all elements will be turned on.

Destroy() command is used to delete the object. Its general form is Destroy(object, time). If we write

Destroy(gameObject); in the script file, the object to which the C# file is attached will be understood

as gameObject and the Box will be completely deleted along with the Hierarchy and Inspector

sections in Play Mode.

90

Destroy(gameObject, 3.0f);

If we write as such, the deletion will take place after 3 seconds.

4.17.Object Control with Mouse

It is possible to hold and drag objects onto the scene with the mouse. One of the most practical

methods for this is to write code for the objects to be controlled with the mouse.

Let's create a C# Script named MouseControl.cs under Assets>Scripts and open it in Visual Studio.

For the application, we can use the OnMouseDrag() method in the Unity library. For this, we will

calculate two Vector3-type variables. One will carry values for the coordinates of the mouse, and the

other will carry values for the coordinates of the object.

We will also define a float-type variable for the third coordinate assignment. Input.mousePosition.x

and Input.mouse.Position.y parameters can be used to transfer the x, y and z information of the

91

mouse to the Vector3 type variable that determines the mouse position. We can enter a fixed value

for the z coordinate.

Vector3 mousePosition = new Vector3(Input.mousePosition.x, Input.mousePosition.y, posZ);

Vector3 objPosition=Camera.main.ScreenToWorldPoint(mousePosition);

Here, the vector variable mousePosition is defined, and the mouse position coordinates are

assigned.

The vector objPosition converts the mousePosition information from the screen to the WorldPoint

setting.

The screen is actually a 2-dimensional plane, and different perspective calculation methods can be

used for the third dimension. While there are short explanations in the codes within the scope of the

course, various written and visual details about their mathematical, geometric and trigonometric

infrastructure can be found on the web.

Finally, the transformation of the object to which these codes will be connected will be made.

transform.position = objPosition;

Let's code in Visual Studio.

We can connect the file we saved to all our objects (Box, 3DOval and Cylinder) in the scene.

92

In Play mode, we can observe that we can hold all three objects with our mouse and drag them to

the desired direction and height and that those with physical materials and jumping features move in

this way.

4.18.Cloning Objects – Prefab and Instantiate

We may want to produce and duplicate objects with codes while the program is running. To do this,

we need to create a prefab copy of that object in the Assets section in the Hierarchy. This form is

called prefab.

Let's drag our Sphere object named Ball on the scene to the Assets section. See that the icon of the

Ball object changes, and a copy is created in the Assets section. This copy is a prefab Ball asset.

93

If we drag the Ball asset into the Assets section to the scene over and over again, Balls with the same

properties will be created. Changing the property of one of them will affect all of them.

After the Ball prefab is obtained, we can delete the Ball object in the scene. Even if this object is

deleted from the Hierachy, we can drag as many clones as we want from Assets and add them to the

scene.

4.19.Adding Objects with Instantiate Coding – Spawn

Instantiate command is used to add, load and clone prefab assets with codes in the scene. This is

also called spawn (reproduction/egg laying).

Let's make an edit according to our new title in BoxCode.cs file and define a public GameObject

accessible in the editor. Here, the variable name is given as kure.

94

With this change, a variable field named kure has appeared in the Inspector section of the Box object

because it is public. However, since a prefab object has not been connected yet, it is in the None

(Game Object) state.

The Ball prefab in the Assets section is dragged and connected to this area.

Now, we can use the Instantiate() command in the code lines.

The general form of this command is,

Instantiate (object, coordinate(x,y,z), angle(x,y,z))

However, it only allows a prefab copy of the invisible Ball object that we deleted from the Hierarchy
with Instantiate(kure) to be added to the scene. kure in the Instantiate(kure) command is the kure
defined as public GameObject in the code file and connected to the box in the editor with the Ball
prefab.

95

A clone of the Ball object is added to the scene with Play mode. This object appears in the Hierarchy

with the name Ball(Clone).

Now, let's write the Instantiate command in accordance with the wide format. Here, kure object (i.e.

Ball prefab) to Box, the identity function (i.e. its original rotation values) connected to the

Querternian command used to determine the position and angle we want to appear;

Quaternian.identity.

96

We have obtained a similar image to the previous one. However, our definition and parametric

modification capabilities have increased.

Now, specify the coordinate where the sphere will appear as (-3f, 6f, 0f). The Ball that appears above

will fall due to the Gravity effect in the Rigidbody.

97

Let's make changes to the code to clone 3 Balls. For this purpose, let's create a for loop and make

them fall. With the expression new Vector3(-3f, 4f+i,0f) in the loop, each clone kure is made to

appear four units higher in the Y direction (vertical axis) by the value of the i variable. In this way, the

spheres (kure) are prevented from appearing at the same point.

98

Another scenario is that when any key is pressed the Ball prefab object is added to the scene.

In its simplest form, as a result of these codes, each time the Space Bar is pressed, the Ball prefab is

added to the same coordinate. However, since it is a Rigidbody, they push each other upwards. In

the example run, the space bar was pressed four times.

99

However, if we want the Ball prefabs to fall from the top instead of pushing them from the bottom

to the top by keystrokes, we need to enter new Vector3 (x,y,z) coordinates of the point we want

them to fall from.

When we run the application, Ball prefabs start falling from the coordinate (-3f,5f,0f) depending on

the Space Bar keystroke. Also, notice that a Ball(Clone) is added to the Hierarchy with each

keystroke.

Since there is no physical jumping feature in the Ball prefab, the falling spheres (kure) pile up on top

of each other.

100

For the Ball prefab, first add a Physic Material to the Assets section.

Then, adjust its bounciness settings.

101

Now, drag and connect the Physic Material to the Material field of the Ball prefab.

Run it in Play mode again. We can see that the balls bounce under the effect of the physics material,

and after a while, they move left and right and fall from the Plane.

102

Alternatively, if we write

Instantiate(kure, new Vector3(-3f,5f,0f),Quaternion.identity); instead of

Instantiate(kure, transform.position, transform.rotation);

every time we press the key, the code will appear in the Transform position and rotation of the

sphere we are connected to. However, this will collide with the present sphere(s). Instead, we can

open an empty game object and connect the code file to it.

Using Lerp and eulerAgles in Movements

103

Lerp literally means linear interpolation. It is generally used in Unity C# coding to provide accelerated

movement. Euler is the angular exponent value used in trigonometry, which forms the basis of

natural logarithms. It is used to define objects in terms of angles.

Let's create two cylinders, one large and one small, in our scene for the project that will rotate a

GameObject horizontally by 0, 90, 180 and 270 degrees with keystrokes. Place the smaller cylinder

on top of the larger one, as shown in the figure.

Now, create an empty GameObject object with Hierarchy>Create>Empty. This can be named

twinCylinder. Drag two cylinders to this object and create a parent-child relationship. Let's make

sure that all objects are in the center. If they are not, move them to the center (0, 0, 0) position with

Transform>Reset.

Add a new C# Script file to the Assets section. Drag the file named Hareket.cs to the twinCylinder

empty object and connect it.

104

Since it will be a 3D vector movement, define a variable by resetting its initial value.

Vector3 vec = Vector3.zero;

As there will be rotation depending on the key, continuity is required. Therefore, write the codes in

the Update() method.

Since the rotation will be in the Inspector>Transform area, we can check/update the vector

direction/angle by assigning Vector3.Lerp to the eulerAngles function as follows.

transform.eulerAngles = Vector3.Lerp (transform.eulerAngles, vec, 0.1f);

Here, it has a template like Vector3.Lerp(from where, to where, in how much time). Because there

is transform.eulerAngles on both the left and right of the equation, it is understood that there will be

a change depending on the vec variable (y-axis) and not the value of this point. The speed of this

update is in float time type, and 0.1f is assigned here.

Now, specify what will happen when the W, A, S, and D keys are pressed and assign a value to our

vector variable vec.

if (Input.GetKeyDown(KeyCode.W))
{ vec = new Vector3 (0f, 0f, 0f); }
if (Input.GetKeyDown(KeyCode.D))
{ vec = new Vector3 (0f, 90f, 0f); }
if (Input.GetKeyDown(KeyCode.S))
{ vec = new Vector3 (0f, 180f, 0f); }
if (Input.GetKeyDown(KeyCode.A))
{ vec = new Vector3 (0f, 270f, 0f); }
The value of the vec variable is constantly updated in the Update() method. If a key is pressed, it is

returned to its new position.

105

Since the code file is connected to the parent twinCyliner, both cylinders in the child state will move

simultaneously.

The main purpose of using the Vector3.Lerp function is to soften the sharpness of movements and

provide a certain smoothness in turns.

Now, assign an alternative rotation script to our Box object and try this on Box. Position it up and

remove gravity. Reorganize the Motion.cs code as follows.

106

Let's define the variable donmeHizi, which is a real and public number, and assign it a value like 5.0f.

Define the rot variable of type Vector3 in the Update method and assign the transform information

with the eulerAngles function.

In Play mode, it will be seen that the Box object rotates at the specified speed without any

keystroke.

As the speed parameter is public, the editor can also change it.

107

4.20.Raycast – Collision Control by Ray Spreading

In Unity, rays that are not visible to the user can be emitted between objects, and collision control

can be provided.

Previously, Collider and Rigidbody physics elements were required for two objects to collide. In

Raycast-type collisions, both objects need to have a Collider, but a Rigidbody is not required.

However, there is no harm in having it.

Ray propagation can generally be in two ways:

i- From Object

ii- From Camera

iii- From Mouse

i- Ray propagation from Object

Let's come to the Unity project since how it is used in the application will be better understood. We

had two objects named Box (Cube) and 3DOval (Capsule) in the scene. Now, create a C# Script

named RayCollider.cs to connect to the Box object.

Create a variable defined as RaycastHit in the script file that carries the information about the object

that the ray (Ray) hits.

RaycastHit obj;

Hence, the obj variable has the feature of carrying some information about the object that the ray

hits.

Since the ray will be sent for continuous control purposes, write our codes in the Update() method.

108

If we consider the ray as a physics element, the code formula/template for sending the ray can be

written as follows.

Physics.Rascast(start_position, ray_direction, out variable, ray_length)

We can adapt it for our project as follows,

Physics.Rascast(transform.position, transform.right, out obj, 5.0f)

Here,

with transform.position, we determine the position of the object (Box) to which these codes are

connected as the starting point. transform.right will be sent to the right side (X-axis) of the object

(Box) (if it were Vector3, it would be the X-axis according to the scene reference). With out obj, the

information about the object that the ray hits is assigned to obj, a variable of type RascastHit, as an

output. The maximum ray length (max_length) is written as a unit distance in float type.

If we put this code expression in the if form, we can determine whether the ray hit an object. If this

collision has occurred, it can be tested with a separate if statement whether it is the targeted object.

If it hits the right object, we can declare this to the console with a message. The coded version of

this setup is given below.

if (Physics.Raycast(transform.position, transform.right, out obj, 3.0f)
{ if (obj.collider.gameObject.tag== “3DGroup”)
 { Debug.Log(“ Ray collided 3DGroup ”); }
}

In the second if statement, obj, which carries the information about the object that the ray hits and

the tag name of the gameObject that it collides with (collider), 3DGroup, gives a message with

Debug.Log.

109

When we run it in Play Mode, we pull the cube (Box) to the right. When we reach the maximum

length of 3.0f, Debug.Log() command runs continuously. When we zoom out, the messages are cut

off.

Alternatively, instead of transform.right in the code, we can specify a direction we want with new

Vector3(X, Y, Z) coordinates [new Vector3(1,0,0) for the right direction (X)].

Another alternative is to use a name instead of a tag.

if (obj.collider.gameObject.name== “3DOval”)

After checking that it works with the message when the ray hits the object we specified, we can

access its Mesh Renderer property and make it invisible.

obj.collider.gameObject.GetComponent<MeshRenderer>().enabled=false;

110

When the capsule enters the ray range, it becomes invisible. However, since it is not deleted, the

Debug.Log command continues to work.

Alternatively, if you use

obj.collider.gameObject.SetActive(false);

The capsule becomes invisible, and the collision stops.

We can also run it by deleting the object.

Destroy(obj.collider.gameObject);

111

With this operation, the capsule named 3DOval is deleted, all its components are closed, and the

collision stops.

4.21.Ray Emission from Camera

To emit a Ray (ray) from the camera, first, a ray is created, and for this, a Ray-type variable must be

defined. This variable should find the camera object to be used by name, reach its Camera

Component field, and emit a ray from the point whose coordinate is determined with the

ViewportPointToRay (screen coordinate) command. Now, let's apply this information to a variable

named Ray type isinYay.

Ray isinYay = GameObject.Find(“Main Camera”).GetComponent<Camera>().ViewportPointToRay(new

Vector3(0.5f,0.5f,0f));

In this section, which can take values between 0 and 1, we mean the center point of the camera with

the coordinate (0.5f, 0.5f, 0). While this variable is taking a value, if the physical ray produced hits an

112

object, transfer its information to our RastcastHit type variable obj. The following code with a bool

type return can be used to test this.

Physics.Raycast(isinYay, out obj)

To see if this ray hits the object defined by tag or name, send a message to the console with the

Debug.Log command.

When we switch to Play Mode, this time we need to move the camera left and right since it is a ray

emitter. When the center point of the camera (0.5f,0.5f,.0f) aligns with the objects whose tag

information is 3dGroup, that is, both the cube and the capsule, we can see the Debug.Log message

reflected in the console.

Ray is frequently used in FPS (first-person shooter) type applications.

We have seen that Ray propagation from objects and cameras, and when it hits, it can give a

message and change the Mesh Renderer settings of the object it hits or its properties.

// Kamera isini carpti: camera-ray hit

113

4.22.Ray Propagation from Mouse

Another type of Ray propagation is done via Mouse. The only difference from the previous camera

application is the addition of the ScreenPointToRay function instead of the ViewportPointToRay.

Here, using the mouse position is a common application, and this can be provided with

Input.mousePosition.

The following command line can be written for the Ray type variable to get a value and emit a ray.

Ray isinYay = GameObject.Find(“Main Camera”).GetComponent<Camera>().ScreenPointToRay(Input.mousePosition);

Let's apply it to the code without making any other changes to the program.

Debug.Log messages were successfully sent to the console when the mouse was moved and

hovered over both 3DGroup objects (cube or capsule). Messages were also stopped when the

mouse was not over these two objects.

In Physics.Raycast(isinYay, out obj) expression, a distance definition can be added as

Physics.Raycast(isinYay, out obj,100f). When this is not the case, the ray length is infinite. It is

preferable to set a distance in terms of performance and to maintain the computer processor.

However, this distance should be determined with a couple of trials and its lower limit should be

found.

// Kamera isini carpti: camera-ray hit

114

4.23.FPS/P (First Person Shooter/Perspective) Applications

One of the common applications is to move the scene from the eyes and perspective of the person

moving in the 3D environment. Depending on the scenario, various jobs and tasks can be performed

during this movement. But first, this movement must be provided. There are FPS assets available for

use by Unity Technologies or other manufacturers in the Asset Store. In this section, let's see how we

can create our character within simple scene setups and provide movement with codes with a few

alternative approaches.

For the first approach, a project called FPSApp1 was created for the application, the purpose of

which is to control movements and camera with keys and a mouse.

A platform for the application was established for the scene (SampleScene). A simple design was

made for the platform with a Plane, Cube, and Sphere. A Capsule called Player was added.

115

Let's drag the Main Camera under the Player (Capsule) object and establish a parent-child

relationship. Reset the camera transform properties so that it references the capsule.

Now, position the camera at the top of the capsule, which can be considered head level, where we

loaded the FPS role. Adjust the angle of view.

1

116

After physically setting up the order, create and develop two C# code files required for the capsule

(Player) in the FPS role and the camera representing our eye (M.Akkuzu approach was used here).

We created two files named PlayerControl.cs and CameraControl.cs in the Assets>Scripts folder.

Screen geometry, trigonometric, and axial coordinate calculation information is not included in the

content of this document and can be found in various written and visual sources. Theoretical

information is applied in this section, and short explanations are provided.

Now, we can write the codes in Visual Studio. Let's specify a public float type variable that will carry

the speed of the player (capsule) and a variable for the z-axis speed.

Since the movements are continuous, we write the relevant codes in the Update() method.

First, transfer the information from the Input.GetAxis("Horizontal") and Input.GetAxis("Vertical")

ready functions to the float type x and y variables.

float x = Input.GetAxis("Horizontal");

float y = Input.GetAxis("Vertical");

These functions also automatically provide the use of the arrow-direction keys and the A, S, D, and

W keys. This will transfer the coordinate information required for movement in the horizontal

plane. However, the depth dimension is not included in this scope. For this, it will be necessary to

assign a key (vertical) to a float-type variable to ascend and descend. For example, the Q key can be

used for ascending and the E key for descending.

if (Input.GetKey(KeyCode.Q)) dikey = 1;
if (Input.GetKey(KeyCode.E)) dikey = -1;

117

Now, we can calculate the three parameters we will need in the displacement command

transform.Translate(). The x, y and dikey (vertical) parameters are multiplied by the velocity variable

defined as a float and Time.deltaTime for the time standard.

x *= Time.deltaTime * hiz;
y *= Time.deltaTime * hiz;
dikey *= Time.deltaTime * hiz;

Now, we can combine these three parameters into the transform.Translate() construct.

transform.Translate(x, dikey, y);

And coding in Visual Studio...

Then, drag and connect the PlayerControl.cs file to the Player object.

Do not forget that if the written codes are not connected to the relevant objects, they will only exist

as a non-functional entity under Assets.

118

In case of adverse reaction to direction keys, x and parameters can be multiplied by -

transform.Translate(-x, dikey, -y);

Now, test in Play mode and see that movement is provided with arrow keys and ASDW keys.

Come to camera control and CameraControl.cs file.

Although we see three-dimensional movement on the screen, the third-dimensional coordinate of
the objects is obtained by perspective calculations made on a two-dimensional plane. Therefore,
both two-dimensional vector and three-dimensional vector calculations must be used. Mathf.Lerp
and Quaternion functions will also be needed to avoid sharp movements and for angle calculations.

Use float-type variables for precision and smooth transitions in movements.

float hassas=5f;
float yumusak=2f;

We can also plan to use two Vector2 to carry the camera and new position information, and a

GameObject type variable for the rotation transition calculations.

Vector2 = newPos;
Vector2 = camPos;
GameObject player;

In the Start() method, assign the first transform value to the game object named player.

player=transform.parent.gameObject;

We can perform the other operations in the Update() method since there will be continuity.

119

Let's create a Vector2 type farePos variable for the mouse position and assign the X and Y

coordinates of the mouse with the Input.GetAxis("X") and Input.GetAxis("Y") commands. This

process will be repeated 24 times per second or more.

Vector2 farePos = new Vector2(Input.GetAxis("Mouse X"), Input.GetAxis("Mouse Y"));

After transferring the mouse coordinates to this variable, a new scale calculation can be made using

these coordinates and the sensitivity and smoothness variables.

farePos = Vector2.Scale(farePos, new Vector2(yumusak * hassas, yumusak * hassas));

Now, we calculate the axial coordinates of the mouse position changes. Assign values to the X and Y

elements of the variable we defined above as Vector2 newPos. Do this with the real number math

function Mathf and the Lerp, which smooths the transition with interpolation. Since the third

parameter in the (float a, float b, float t) pattern of this function is the float t (time) type, we can

specify it as 1f/yumusak here.

newPos.x = Mathf.Lerp(newPos.x, farePos.x, 1f / yumusak);
newPos.y = Mathf.Lerp(newPos.y, farePos.y, 1f / yumusak);

With these two components, the new camera position can be calculated with a simple addition.

camPos+=newPos;

We can calculate the rotation locally with the command whose general form is

Quaternion.AngleAxis(float angle, Vector3 axis).

transform.localRotation= Quaternion.AngleAxis(-camPos.y, Vector3.right);

Here, the negative of the camera position is made for the angle, and the right orientation is made for

the 3D vector parameter. In some local and global coordinate differences, the keyboard and mouse

can go in the opposite direction of the desired direction. In this case, a correlation should be made

with -/+ markings.

The last process is to calculate the game object Player.

player.transform.localRotation = Quaternion.AngleAxis(camPos.x, player.transform.up);

Here, the local rotation angle and 3D vector position are calculated.

120

Now, drag and connect the script file to our camera on the scene and make the codes effective on

this object. Run it in play mode.

For a better application, the Player (capsule) Mesh Renderer check box can be unchecked to make

the capsule invisible. In the camera's Clipping Planes settings, Near can be changed to 0.01 and Far

to 1000 or greater.

For the second approach, let's create a new scene named FPSApp1. The scene design is similar to

SampleScene with a small change; the object colors are different. In this application, unlike the

previous one, the FPS body (Player) and camera controls will be combined in a C# file.

121

Now, create a file named FPSBasic.cs under the Assets>Script folder and open it in Visual Studio.

This scene utilizes the User1 Productions (YouTube) approach.

We can define three public float-type variables to control walking, running and jumping
movements. Also, define a public Transform type variable for the camera transform reference and a
public float type variable for the camera control sensitivity.

public float walkSpeed = 5f; // Speed of Walking

public float runSpeed = 10f; // Speed of running

public float jumpForce = 5f; // Force of jumping

public Transform cameraTransform; // Reference to the camera transform

public float mouseSensitivity = 2f; // Mouse sensitivity for camera control

Also, add a Vector3 type variable for the player speed coordinates and a bool type variable for the
jump control with the Unity variables CharacterControl.

122

private CharacterController controller; // character control variable

private Vector3 playerVelocity; // velocity vector

private bool isJumping; // jump - true or false

In the beginning, access the controller variable to the CharacterController component of the object
that will be used in the character control (after connecting). Now, make sure that the cursor position
is centered on the screen.

controller = GetComponent<CharacterController>();

Cursor.lockState = CursorLockMode.Locked; // Lock the cursor to the center of the screen

If the continuity of the movement is considered, we should write the control codes of the character
(player) and the camera to the Update() block.

Whether or not the running movement will occur can be linked to the left shift key being pressed.
We can provide this information during vectorial movement by transferring the result to a float-type

variable (for example, moveSpeed). While calculating moveSpeed, we can use the ? condition

operator means that if the left shift key is pressed, walkSpeed is activated; otherwise, runSpeed is
activated. These variables were previously defined as public float. In addition, during the player
movement, during walking/running, we can transfer the horizontal and vertical axis information to
float-type variables with the Input.GetAxis() command.
The axial data and speed data, and the 3D vectorial information of the control variable are
transferred to the move variable.

float moveSpeed = Input.GetKey(KeyCode.LeftShift) ? runSpeed : walkSpeed;
float horizontal = Input.GetAxis("Horizontal");
float vertical = Input.GetAxis("Vertical");
Vector3 move = transform.right * horizontal + transform.forward * vertical;
controller.Move(move * moveSpeed * Time.deltaTime);

There are ready-made functions used for CharacterController type variables.

Let's set up an if conditional sentence to reset the velocity on the y-axis after the jump with the
isGrounded function and to stop the jump.

if (controller.isGrounded)
{ playerVelocity.y = 0f;
isJumping = false;
}

When the jump is connected to a key, the GetButtonDown function connected to the data input
command (Input) can be used. Here, the "Jump" keyword can be used, and isJumping is connected
to the sentence by negating it. When the conditions are true, a formula is applied that adds the

123

square root (Sqrt) of the jumping power and physical gravity to the player speed (playerVelocity).
isJumping is set to true.

if (Input.GetButtonDown("Jump") && !isJumping)
{ playerVelocity.y += Mathf.Sqrt(jumpForce * -2f * Physics.gravity.y);
 isJumping = true;
}

Since the y-axis is vertical/depth, the physics gravity and the time regulator Time.DeltaTime are
multiplied by the playerVelocity.y axis to control the jump with gravity. Then, the control is reflected
in the movement of the variable with the controller.Move command.

playerVelocity.y += Physics.gravity.y * Time.deltaTime;
controller.Move(playerVelocity * Time.deltaTime);

After player control, let's come to camera control. Here, two separate calculations are needed
horizontally and vertically.

Data assignment can be made with two ready-made function templates Input.GetAxis("Mouse X")
and Input.GetAxis("Mouse Y") for two float-type variables. In order to prevent sharp movement, we
multiply it with the mouseSensitivity we defined earlier. We use these two-coordinate data in three-
dimensional vector transformation in rotation. Here, Vector3.up is a useful ready-made function.

float mouseX = Input.GetAxis("Mouse X") * mouseSensitivity;
 float mouseY = Input.GetAxis("Mouse Y") * mouseSensitivity;
 transform.Rotate(Vector3.up * mouseX);

For the camera's vertical movement, first, the current angular information is transferred to the 3D
vector variable, and then the desired new angle is calculated by taking the difference between the x-
axis component of this information and the y-axis value of the mouse. If this x-axis value is more
than 180 degrees, 360 degrees are subtracted from it. Otherwise, the x-axis value is calculated
directly with the Matf.Clamp command as a 3D vector.

Camera rotation angles are also calculated with the Quaternion.Euler() command.

Vector3 currentRotation = cameraTransform.rotation.eulerAngles;

float desiredRotationX = currentRotation.x - mouseY;

if (desiredRotationX > 180) desiredRotationX -= 360;

desiredRotationX = Mathf.Clamp(desiredRotationX, -90f, 90f);

cameraTransform.rotation = Quaternion.Euler(desiredRotationX, currentRotation.y, currentRotation.z);

This step-by-step process sequence and its explanations are coded in Visual Studio.

124

Now, we can drag the code file to the Player and turn it into a component.

The Camera Transform section of the FPSBasic script is empty, and the camera to be controlled
needs to be connected here. Drag the Main Camera here and connect it.

125

Another issue is the addition of the CharacterControl component defined and used in the codes to
the Player (capsule) object.

If we turn off the Mesh Renderer feature of the capsule, we will not see the capsule when looking

down, and its shadow will not appear.

Experience that we move with the arrow keys in play mode, that we can look in every direction with

the mouse, and that we can determine the direction of movement. While moving, the left shift key

simultaneously switches to running mode, and when the space bar is pressed simultaneously, the

player will be seen to jump.

126

As can be seen, we have made coding that is different from the previous approach but ultimately

works at a similar level.

Note: The codes can be used on our projects one-on-one using various written and visual sources. In

some sources, the codes are provided ready-made. It is useful to use them even without

understanding them in the beginning. Using ready-made codes is a natural part of application

development. As a result of doing and writing many applications with coding, the developer can start

to make his comments. This requires time and effort.

Similarly, locomotion in a mine area is given below.

127

5. ADDING SCENE OBJECTS AND ASSET RESOURCES

Before we continue adding GameObjects to our scene, it is useful to give brief information about a

few websites: Unity Asset Store, Sketchfab, and others such as Rigmodels, GrabCad, and 3D

Warehouse.

5.1.Unity Asset Store

When you enter the address assetstore.unity.com and examine it, a site awaits us with thousands of

free and paid 2D and 3D objects, packages, ready-made games, etc., that we can add to our scenes.

With this content, which makes many of our jobs easier, avoiding having to do everything from scratch

and not having to write long codes is possible.

Here, by opening the account we opened on Unity Hub, we will be directly connected to our project.

By accessing this site from within the project, we will be able to add assets to our Package Manager.

5.2.Sketchfab

Another external source is the website called Sketchfab.com. There are thousands of ready-made
objects, animated designs, and stage materials that belong to many different professions and
disciplines. We can add files to our scene by opening an account and downloading/adding them to our
Asset window/folder.

5.3.GrabCAD, Rigmodels and 3DWarehouse-Sketchup

GrabCAD.com, Rigmodels.com, and 3DWarehouse.com (Sketchup) are other very important

resources and websites that provide a huge asset library that is mostly free.

128

5.4.Terrain

Unity's tool for creating impressive terrain design quickly is Terrain. Adding Terrain to the Hierarchy

creates a flat area on the stage that is dozens of times larger than a normal plane.

Terrain and Terrain Collider will be seen when examining Terrain's Inspector, apart from the

Transform features.

129

The most important functions for Terrain: Paint Terrain, Paint Trees and Paint Details.

Paint Terrain is used to create height and depth in the field. When this feature is selected and the

related menu is opened, its sub-parameters appear. Raise or Lower must be selected to obtain height.

The same selection is made by lowering the ground with the Shift key. Another selection to be made

is to select a brush head from the Brushes section. When our mouse is moved on the Terrain, the

ground will rise or fall according to this pattern.

Paint Terrain Paint Trees Paint Details

130

In the following figures, the shape left by the brush on the field and the heights created by moving

the mouse are seen.

131

As you can see, a terrain topography was quickly obtained. The brush selected in the Inspector also

has settings for brush size and solidity-effect degree, such as Brush Size and Opacity. The effects of

changes in these can be observed when creating a field.

To add texture to the field, select Paint Texture from the list under Paint Terrain. Under Paint Texture,

click Edit Terrain Layers-> Create Layer to open a selection window for a new texture layer.

132

This window shows the files that can be used under the project. In the example, two JPEG files have

been added to be used on the ground. One is a plain soil color made in Paint Brush, the other is a file

found by searching the internet for "ground texture" or "grass texture". When the "Grass" texture is

selected, the field is automatically covered with this texture because it is the first and only selection.

Once again, Edit Terrain Layer > Create Layer ground selection will appear in the Terrain Layers

section; the second texture will appear. After that, the desired areas will be painted with the ground

color with the brush.

133

To add trees to the field, we first selected a low poly model from the Asset Store or Sketchfab.com

and added it to our project. Now, from the Terrain menu, Paint Trees and Edit Trees can be selected.

134

We add the tree we took to our project from the window that opens with the consecutive Edit Trees

>Add Tree > No (Game Object) > Select GameObject > lowpoly_Tree > Add selections. In the areas

where we move our brush, trees appear in a short time and a forest is formed.

135

It is possible to create a real nature image on the field by doing the same process using grass or flower

models with Terrain > Paint Detail > Edit Detail > Add Grass Texture file selection and then, Add.

136

5.5.Terrain + Standard Assets Using Unity Asset Store

There are Unity Assets with very rich content to create natural landscapes. For this, the Unity Asset

Store can be opened, and many ready-made assets, both paid and free, can be downloaded. For this,

Window>Asset Store should be selected. Then, we connect to the website with the Search Online

selection. It should not be forgotten that the same account ID should be used in both Unity Hub and

Unity Asset Store. In this way, it is possible to download assets directly from the internet to our project.

137

Here, Standard Assets, which is free and belongs to Unity Technologies, should be searched.

138

With this selection, we will first add the asset, which contains very rich materials, textures, scenes, C#

codes, etc., to our Assets archive, and then download it directly to our Package Manager with Open in

Unity.

Standard Assets will be visible and importable in the Package Manager. After import, another window

will open and show all package content. With the Import key in this window, the package is added to

our Assets window.

139

When we follow the path we followed before in Terrain under Standard Assets, we will see that new

trees, textures, grass and flower models, vehicles, features, and First and Third Person Shooter (FPS

and TPS) codes and features have been added.

With the terrain components offered by Standard Assets, much more successful and realistic field

designs can be made. An application environment can be created with houses, transportation vehicles,

people, animals, etc. added to this scene.

140

Moreover;

By positioning Assets>StandardAssets>Environment>Water>Water4>Prefabs>Water4Advanced,

prefabs in the scene, lake, sea, and stream can be added.

Another feature offered by Standard Assets is the FPS and TPS character options that allow movement

within the scene.

For an FPS scene, the Main Camera needs to be cleared (or inactive). Afterwards;

Assets>Standard Assets>Character>FirstPersonCharacter>Prefabs>FPSController

The prefab control is added by dragging it to the scene or Hierarchy, following this order.

141

FPSController has its camera. Therefore, the position and viewpoint of the FPSController in the scene

are adjusted.

In Unity 2022, a line of code under Standard Assets needs to be added, and a small change needs to

be made to a line of code. To do this, in the Assets>Utility>SimpleActivatorMenu.cs file, add

using UnityEngine.UI; and change the public GUIText camSwitchButton; line to public GUIText

camSwitchButton; as

GUIText >Text:

142

Settings in the Inspector of FPSController can be changed depending on personal preferences.

As a result, an application is run that can be navigated with the arrow keys, w, a, s, and d keys, jumped

with the space bar and controlled 360-degree viewing movements with our mouse.

143

6. DEPLOYING PLATFORMS

6.1.Build Settings

It was stated that Unity is a cross-platform. This means that projects produced in Unity can be

adapted to computers, web, mobile devices, VR (virtual reality), AR (augmented reality), and game

console platforms. Let's see how the FPS application we developed for Terrain can be converted into

a computer application in EXE format.

After the project is completed, Build Settings should be selected from the File menu.

The window that opens contains the scene, platforms and other settings.

144

Our scene must be added to the list with the Add Open Scenes button. Since we will not be switching

to another platform, changing the Platform section is unnecessary. However, another platform should

be selected according to the type of application, and the Switch Platform button that will appear after

the selection should be used to switch.

One of the most important buttons under Build Setting is Player Settings.

Player Settings are in the Project Settings window, along with many other settings.

145

Company Name and Product Name information must be entered for the project title that will be

converted into an application. An image file prepared for the icon image that will appear in the folder

is placed in the Default Icon section.

These definitions are sufficient for the PC application. Now we can proceed to convert the scene to an

application (EXE program). To do this, click the Build and Run button in the Build Settings window.

With this selection, the program asks us to create/open the folder where the application will be

created.

In the open window, right-click on the mouse and select Folder from the New option. Save the folder

name of the application and select it. The program will automatically start compiling and creating EXE.

It is normal for this process to take a certain amount of time, depending on the computer's hardware

power.

After the application is compiled, the game starts immediately. After visiting the field, press Alt+F4 to

exit the game. The EXE file and other component files and folders are created under the specified

folder.

146

6.2.Cameras

Other cameras can be added next to the current camera, including their viewing angles, screen sizes,

and locations. To do this, right-click on our mouse under Hierarchy, create a camera, determine its

angle, and position it in place.

In the example, a camera is added, positioned to see the field from above, and its angle is adjusted.

147

To get results from the Inspector>Viewport Rect setting, the positions on the screen are set with X

and Y, and the dimensions of the new camera on the screen are set with W and H. If the Depth setting

is a number greater than zero, it will be seen together on top of the FPS camera. It is possible to see

these settings more clearly in Game mode.

However, finally the Camera needs to be dragged under the FPSController. It is possible to add other

cameras and different angle views.

148

6.3.Parent Child Relation

By dragging the camera under the FPSController, a Parent-Child connection is created between them.

The camera becomes the child of the FPSController and is subject to the movements of the FPSPlayer.

In game mode, when the FPS moves, the other camera will follow it, and the image above will follow

the image below.

6.4.Skybox

The sky seen behind the scenes is a standard application. If desired, it can be changed to a fixed color

or different sky backgrounds. Skybox assets can also be found in the Asset Store. For the Skybox

application, the relevant window is opened via Window>Rendering>Lighting.

149

In the Lighting window settings, Environment>Skybox Material opens the window with the image

files. The selected image file is assigned as the new sky.

In a normal project where Standard Asset is not used, Skybox change is simpler. The main Camera is

selected, and a fixed color can be selected instead of Skybox in Inspector.

150

6.5.Adding Audio and Video files

An audio file is added to the scene via Hierarchy>Audio>AudioSource.

Afterward, Audio is selected, and the previously prepared audio file in the Inspector is dragged to the

AudioClip area and connected. The loop check box is checked to make the audio file loop

continuously.

151

To add an image file to the scene, it is possible to add a Plane to which the file will be assigned. The

Plane is positioned on the scene and its dimensions are adjusted.

To add the prepared video film, first select Plane. The component is added with the Add

Component>VideoPlayer selection.

152

Video Player has been added to the Inspector connected to the Plane. The video file that was

previously prepared and added to the Assets section is dragged to the Video Clip area and connected

here. If the Loop box is checked, it will loop.

153

The Plane added to the field now has a video player feature.

6.6.Animation

Let's add an animation without changing the scene. Animations can be added to a certain extent in

Unity. The relevant object is selected and applied to it.

Let's add any 3D object or a cylinder to our scene and scale it like the gold image. Let's choose

Window>Animation>Animation.

154

A window opens for the animation. Here, a new animation is started with the Create button.

First, a file name is given to create the file related to the animation.

155

We named the animation spin. After that, a new window will open where we will create the

animation.

With AddProperty, animation types will be displayed. Rotation is selected under Transform.

156

The animation determination process starts by pressing the red button - Enable/Disable. Here, the

timetable and the Rotation line in the Inspector turn red.

Let's hold the line on the timeline and bring it to 60'. 60 frames are equal to one second. The aim is to

determine which position it will be in the 60th frame. In the example, it is planned to rotate around

360 degrees. For this reason, a rotation value of 359 degrees is written around the Y-axis. The

animation can be seen by pressing the play button.

157

There is one last setting to achieve a continuous rotation instead of a choppy movement. This is

achieved by right-clicking on the anchors in the first and last frames and selecting Auto in the window

that opens.

In game mode, our gold will rotate around itself. You can find other types of animations by trying them.

158

6.7.Switching Between Cameras in Unity

In scenes with multiple cameras, various methods can be applied to switch between cameras; UI

Button applications, keying in camera numbers, navigating between cameras with a keyboard

character, etc. In this tutorial, two methods and two C# code files will be shared.

6.7.1. 1st Method

Let's drag the low poly city file we got from Sketchfab to our project. We named the main camera

Camera0 (not required but for clarity). Let's add three additional cameras to look at the city from

different angles by selecting Camera with the right mouse button in Hierarchy. In this application, the

cameras are named Camera1, Camera2, and Camera3. Also, to open an empty game object in the

same place, let's right click the mouse and select Create Empty. This object is named KameraGecis.

159

Let's create a C Sharp (C#) file named KameraGecisleri.cs with Create>C# Script in the Assets section.

Now, write the following codes to this file.

As an editor, if Visual Studio is installed with Unity installation, this editor will automatically open

when the file is double-clicked, and codes can be written. If Visual Studio is not installed, you can

open the KameraGecisleri.cs file with Notepad, WordPad, etc. and perform the writing process.

160

After the KameraGecisleri.cs file is written, let's drag and connect this file to the object we opened as

GameObject and named KameraGecis.

using UnityEngine;

public class KameraGecisleri : MonoBehaviour
{
 public GameObject[] Cameras; // Kamera dizisi
 public int counter = 0; //kamera sayacı

 void Start()
 {
 foreach (var item in Cameras)
 {
 item.SetActive(false); //kameraları pasifleştir
 }
 Cameras[0].SetActive(true);
 counter++;
 }

 void Update()
 {
 if (Input.GetKeyDown(KeyCode.Tab)) //Tab tuşuyla kamera değişimi
 {
 foreach (var item in Cameras)
 {
 item.SetActive(false); //kameraları pasifleştir
 }
 Cameras[counter].SetActive(true); //geçerli kamerayı etkinleştir
 counter++; //sayacı artır

 if (counter == Cameras.Length) //kamera sayısına ulaşıldıysa…
 {
 counter = 0; //sayacı sıfırla
 }
 }
 }
}

//make the cameras passive

// change the cameras with Tab key

// make active the current camera

// make the camera passive

// activate the current camera

// the counter variable

// cameras array

// increase the counter by one

// if the total number of cameras are reached

// initialize the counter

161

According to the code content, the initial value for KameraGecis>Inspector>Cameras is zero. Let's

make it 4.

When the number is set to 4, a camera list will open under Cameras. Let's drag and match all our

cameras in the Hierarchy here so that they match exactly.

162

When we run it in Play mode, it will now be possible to switch between 4 scenes in order with the

Tab key.

In this method, the number of cameras is not specified in the C# Script codes. However, the codes

are based on the principle of specifying the number of cameras in the Inspector after connecting to

the empty GameObject (KameraGecis) in the Hierarchy and dragging and matching the cameras to

their places in the drop-down list.

163

6.7.2. 2nd Method

In this training application, a mining field facility was used, and a total of 5 cameras with different

perspectives were placed. The cameras were dragged under the empty object called CamSelect,

which was opened with Create Empty in Hierarchy, and gathered under one roof (this is not

necessary; they can remain separate).

The Cam tag should be given to the Tag section of the cameras, as it is defined that way in the codes

that will be shared shortly.

To do this, these operations must be performed in order on the cameras in the Hierarchy; first, let's

select the camera and open its Tag in the Inspector.

To add a Cam tag that does not exist here, select Add Tag.

164

Now, define our Tag by pressing the + key. Write Cam here and save it with Save.

Now all our cameras can be given the Cam tag that appears in the Tag list.

Also, in this application, an empty GameObject is created with Hierarchy>Create Empty and its name

is changed to CamSelect.

A C# Script file called CameraChanging.cs has been created in the Assets section.

165

 As before, this file was opened in the editor and the following code lines were written.

Next, let's drag and drop the CameraChanging.cs code file to our CamSelect object in Hierarchy.

using UnityEngine;

public class CameraChanging : MonoBehaviour
{
 public GameObject[] Cameras; // Kamera dizisi
 public int counter = 0; //sayaç

 void Start()
 {
 Cameras = GameObject.FindGameObjectsWithTag("Cam"); //Cam etiketli kameraları bul
 }

 void Update()
 {
 if (Input.GetKeyDown(KeyCode.Tab)) //Tab ile kamera geçişi
 {
 foreach (var item in Cameras)
 {
 item.SetActive(false); //kameralrı pasifleştir
 }
 Cameras[counter].SetActive(true); //geçerli kamerayı aktifleştir
 counter++; //sayacı artır

 if (counter == 5) //sayaç 5 ise
 {
 counter = 0; //sayacı sıfırla
 }
 }

 }
}

//find the cameras with Cam tag

// change the cameras with Tab key

// make the cameras passive

// make active the current camera

// increase the counter by one

// if the counter is 5

// initialize the counter

// the counter variable

// cameras array

166

Our application is ready. Now, we run it in Play mode.

In this application, the codes are based on placing 5 cameras. For fewer or more cameras, the codes

will need to be changed. In the first method, there is no limit on the number. In this method, it is not

necessary to connect the cameras to the list.

167

7. LIGHT AND TEXTURE WITH URP

7.1.Universal Render Pipeline (URP) – Post Processing Volume - Glow Effect

Universal Render Pipeline (URP) is a template in which special lighting effects are defined. If the

project is planned to use URP, the process will be faster and easier if the relevant selection is made in

Unity Hub. When the project is opened, a template scene is ready. Scene and game mode images are

below.

168

For the glow effect example work, let's delete or make passive the GameObject named Example

Assets that creates the workshop seen in the scene. Thus, we can easily apply our design in the preset

scene. After Example Assets are closed/deleted, let's add a cube to the empty scene. Now, create a

Material for the cube and give it a yellow color.

The most critical object in the scene is the Post Process Volume. The most critical setting on the

Inspector is Bloom. The Intensity setting under Bloom is used to achieve the glow effect.

169

Intensity - when the intensity is increased, the result will be reflected on the screen.

170

The brightness will increase as the threshold setting is reduced.

You can try and see which setting will give you the results you want. If you add a JPEG file with a dark

background under Assets and add the yellow material to the Base Map section, the result will change

dramatically.

Observe the halo formed around the cube with the tint settings and colors.

171

For the non-glare surface on the left side;

Let's select the color material. Selection is made in the order Shader>UniversalRenderPipeline>Unlit.

172

Light effects can also be used in a coal mine gallery.

173

8. USER INTERFACE (UI)

8.1.UI Text-Button-World Space- Interface Objects-3D Texts

UI-User Interface-Interface is an important object that will interact with the user on the screen. Many

applications are directed by a menu and its submenus. Therefore, with UI, Text, Text-TextMeshPro,

Image etc. options will be able to do this design.

When you select UI with the right mouse button under Hierarchy, the submenu that is connected will

open. The most used object is Text, and the more qualified text-writing object is Text-TextMeshPro.

Let's select TextMeshPro. Then click Import TMP Essentials and Import TMP Examples & Extras. The

parameters related to writing will open in the Inspector.

174

A frame that will cover the entire screen, which is actually 2D, and a text called New Text have been

created. With an object added to the UI, two more objects called Canvas and EventSystem are

automatically added. Canvas is the frame of our screen. EventSystem is the object related to the

operation to be performed. When we come back, we realize that this frame is very large. In fact, the

frame is a 2D structure that can be considered independent in the 3D scene.

175

This 2D frame and text that appears to be huge is actually a small text in the lower left corner of the

screen.

176

Let's add a Plane and a Cube to our scene.

When we pull back, see where these objects are located in the UI text structure.

177

However, in Game mode, in the same scene, we understand that the UI structure is a 2D object on the

screen, while other objects are in 3D structure but in a different size.

Now let's drag the New Text to the middle of the stage and place the anchors around it.

178

Now, move the text to the middle of the stage and change the text and color in the Text Input

section.

The image in game mode will look like this.

179

8.2.Switch between scenes-UI Button

Let's assume that we added a button to our scene with the UI Button and that we want to add a new

Scene to our project and switch to the new scene with this button. We can see the most practical

and fastest way of doing this in an example study.

Now, continue without changing the name of our scene named SampleScene. Let's add a UI>Button

here.

The Canvas and Text section under the Button has also been created. Change the Text color and size.

Also, create a GameObject in Hierarchy. Here we set its name as gec12.

180

Now, create a C# script in the Assets section. Here we name it Gecis12. When we double-click this

object, the Gecis12.cs file will open in Visual Studio 2022. The simple coding required for

transitioning between scenes is done in the file.

181

The command to switch between scenes is SceneManager.LoadScene(“Scene2”); Here we have a

second scene, and its name is planned as Scene2.

Now let's save this scene and open a new scene under the File menu in the project. Name the scene

as Scene2, as in the coding.

Create a UI>Button in the same way. Change its text to Button2 and color red. Add a GameObject and

name it gec21.

182

Create a C# file named Gecis21.cs for this scene and write similar codes in Visual Studio.

The function name is ASSahneye(), and our command can be written as

SceneManager.LoadScene(“SampleScene”); That means switch to our first scene.

The next step is to connect the codes to the necessary objects. Now, drag and connect the code files

to the gec12 and gec21 GameObjects. When we select the Buttons in both scenes, let's press the +

button in the OnClick() section in the Inspector. Drag the gec12 object to the None Object section.

Thus, we have connected our gec12 object to the Button and the codes we connected to it. But another

process is to specify which function we want to connect to the button in this code file. To do this, open

the No Function section, select the name of the code file from the list, and select the Gecis12> Scene12

function from the function list that opens under that name.

183

Then, do the same thing in the second scene.

When the game starts, when Button1 is pressed, we move to the second scene; when the second

scene is pressed, and Button2 is pressed, we move to the first scene. The scenes are very simple and

only contain UI>Buttons. However, the purpose is to see the transition. After the scenes are designed

for the purpose, it is possible to switch between many scenes. The design of buttons and interfaces

has become a field of expertise. In this example, the operation of the process is discussed in its simplest

form.

184

In a mining project, a more comprehensive menu driven application is given below.

8.3.UI Text – World Space

This application is for positioning UI Texts inside our scene. Normally, Canvas and Text, Button, Image,

etc. subcomponents, which cover the whole screen due to their pixel structure and are very small next

to our 3D scene, can be included in the scene with the size and positioning we want. Let's start by

adding Plane, Cube, Circle, Capsule and UI>Canvas to our scene…

When we select UI>Canvas, change the setting in Inspector>Canvas>RenderMode to WorldSpace.

185

We can see how small our Plane, Cube, Circle and Capsule objects are.

To move our Canvas from being an object covering the screen to an in-stage plane, bring the Canvas

under the Plane to the Parent-Child position and provide coordinate unity with the

RectTransform>ResetPosition operation. Then, reduce the X, Y, Z values in RectTransform>Scale to

fit our stage; for example, 0.03. When we focus on the Canvas, we can see its location and size.

186

Now we can move the Canvas to the point we want and add Text, Image, Button, etc. to it. Let's

continue the example by adding UI>Image under Canvas after positioning. If we want the Image to

cover the Canvas, we can bring it to the size we want with the Stretch or direct scale button under the

Anchor. The initial opening color of the Image is white.

Change the color and transparency via Color. It's time to add text. Let's add UI>TextMeshPro to

Canvas. We wrote GSF GIT instead of New Text in the Text section and made size and position settings.

187

Now, check the image in game mode.

To add text to the scene, select 3DObject>3DText in Hierarchy and place the text in the desired

location on the scene. The resolution of the text can be increased by decreasing the Character Size and

increasing the Font Size.

188

Font types, colors, sizes, and locations are up to the designer. Check it out in Game mode, too.

189

9. FPS VE TPS APPLICATIONS

9.1.FPS-First Person Shooter and RPG-Role Playing Game

If the game has a plot where you play through the eyes of the game hero and in his shoes, this type of

game is called FPS-First Person Shooter or FP-RPG-First Person Role Playing Game. For the

application, we can search for Starter Assets, which is offered free of charge by Unity Technologies in

the Unity Asset Store. In this way, Standard Assets was previously downloaded. Now, there are two

more packages on the list; Starter Assets First Person and Starter Package Third Person. Now, add the

First Person one to our assets and import it from the Package Manager.

190

After this process, a confirmation window will open to re-adjust Unity settings. After saying Yes,

Unity will be closed and automatically reopened with its new settings. Standard Assets are visible in

our Assets window. Now, let's go to Starter Assets>FirstPersonController>Scenes and see the

PlayGround scene below it.

191

When we double click on the PlayGround scene file, our new scene with all its edits will appear on the

screen.

192

When the game is launched, we will see that we can move around the stage with the arrow and shift

keys and the mouse, look and move in all directions, and jump with the spacebar.

It is possible to create or add our own scene instead of the Environment that creates the scene. In this

way, we start to move within our own design. By taking a Low Poly city model from the Sketchfab site

to our scene and making the Environment object passive, it became possible to walk around the city.

193

It is also possible to use this application on mobile devices. However, since there are no keys like on

the keyboard on mobile devices, these controls will be made with keys called virtual TouchPad or

joystick.

First, let's go to the Movement Curser Settings setting in the PlayerArmature Inspector section and

uncheck the boxes. Check the Can Push box in the Basic Rigid Body Push section so that it can push

objects.

Now, activate the UICanvasSaterterAssetsIputs_Joysticks object which is previously passive in the

Hierarchy section.

194

Control is now enabled with the added joystick, not the keyboard. In this way, by going to Build and

Settings, it will be possible to convert it to Android or IOS application according to the phone-tablet

type and play it with the joystick on mobile devices.

9.2.TPS Third Person Shooter-Starter

A Third Person Shooter or Third Person Role Playing Game type application is a type of game setup

where we follow the player and see their movements in the form of animations. Let's follow a similar

path for this. This time, Starter Assets - Third Person will be downloaded and imported from the Asset

Store.

195

Similarly, you will be asked for restart confirmation for the settings to take effect, click Yes and the

project will be closed and restarted.

In the package that comes to the Assets section, we will just need to double-click the Playground scene

in Assets>Starter Assets>Third Person Controller>Scenes.

196

The player being followed on stage is a robot. When the game starts, it will be seen that we can control

the movements with the arrow keys, shift, space bar and mouse.

197

This game can also be adapted to mobile devices. However, since there are no keys like on a keyboard

on mobile devices, these controls will be made with a virtual TouchPad or keys.

First, let's go to the Movement Curser Settings setting in the PlayerArmature Inspector section and

uncheck the boxes. If the Can Push box is checked in the Basic Rigid Body Push section, it will also be

possible to push objects.

198

Then, activate the UICanvasSaterterAssetsIputs_Joysticks object which is previously passive in the

Hierarchy section.

Control is now enabled with the added joystick, not the keyboard. In this way, by going to Build

Settings, it will be possible to convert it to Android or IOS application according to the phone-tablet

type and play it with the joystick on mobile devices.

199

By using a mine gallery model, virtual joystick application can be performed. Here, FPS object also

carries the light source (Spotlight) and makes illumination of the gallery with it.

9.3.Third Person Character Controller – Armature Change

The app can be experienced on Unity 2020.3.10f and above. The Universal Render Pipeline (URP)

template will be used.

From Window -> Asset Store, Starter Assets will be downloaded to our Third Person Assets project.

200

After import, accept the restart request.

Since the URP template is used, the sample scene will appear on the screen.

201

Under Starter Assets, double click on ThirdPersonController->Scenes->Playground to load the scene.

A pink screen will appear because there is an incompatibility between URP and

ThirdPersonController (TPS).

202

To solve the problem, select Edit->Render Pipeline->Universal Render Pipeline->Upgrade Project

Materials to UniversalRP Materials.

Proceed key will be proceeding here.

203

The problem will be solved. Now let's determine the character that we will replace with the robot.

For this, let's choose a character from the Adobe Mixamo site.

From the window that opens with the Download button, select FBX for Unity (fbx).

204

Now, drag the fbx file we downloaded into our Unity project (maybe under Assets).

The character is completely white, and the textures are not visible. To solve this, select the file and

click Inspector->Materials->Textures->Extract Textures.

205

It asks us for a folder name. Open a new folder with the right mouse button and select it.

Then, press Fix now to solve the material problem.

206

Also, press Inspector->Rig->Animation Type->Humanoid.

Confirm the changes with the Apply button.

207

Color and textures are matched.

Now, in the Hierarchy section, unpack all the sub-parts with PlayArmature->Prefab->Unpack

Completely.

In the next step, to delete the robot: PlayArmature->Geometry->Armature_Mesh will be deleted.

The robot is now removed from the scene.

208

Drag the fbx character we downloaded from Mixamo and prepared for use under Geometry.

Our fbx (film box) character came instead of robot.

209

Finally, we need to change the avatar. To do this, open the list by pressing

PlayArmature>Inspector>Animator>Avatar.

Select the avatar to which we added the FBX file.

210

Now, in the game mode, there is the character we selected instead of the robot.

Similarly, a mine worker and the environment can also be used for the TPS application.

211

9.4.Transferring Blender Designs to Unity

Blender is one of the most important design and animation packages for Unity. However, the files

may not be fully transferred every time. In order to ensure the visibility of textures and colors when

transferring Blender scenes or objects to Unity, the entire scene developed in Blender or certain

object(s) is first selected.

Then, click on File->Export->FBX (.fbx) option.

212

In the window that opens for recording, the following operations are performed in order: Include-

>Limit to section is clicked and Selected Objects is activated. Thus, the scene or object(s) we selected

are included in the export process.

Copy is selected under the Path Mode section.

Again, the Embed Textures box next to Path Mode is selected and activated.

213

Then, give our file a name under the folder we specified and save it.

Now, come to our Unity scene. Drag the FBX file to the Assets section.

214

It seems that the textures and coatings have not arrived completely. Now, select our FBX object in

the Assets section and look at its settings in the Inspector section.

Select Materials->Location->Use Embedded Materials (Legacy).

215

Then, click Apply. In some cases, click Fix Now in the window that can be opened for customization

purposes.

As you can see, the textures, colors and textures in Blender have been transferred.

216

10. VIRTUAL REALITY – VR APPLICATIONS

10.1.Virtual Reality (VR) Application for Cardboard Devices

It is possible to say that cardboard-type headsets are the most economical VR headsets for

experiencing virtual reality applications. These stereoscopic (superimposing 2 images) based devices

have a chamber where mobile phones can be placed. Therefore, the main application output

platform is mobile devices such as mobile phones and tablets.

It is possible to print cardboard-type devices with Unity. For this purpose, the Google Cardboard XR

Plugin provides a template that will make the process easier.

Let's open the address https://github.com/googlevr/cardboard-xr-plugin on the GitHub site where

the plugin is located. Copy the link by clicking on the link in the HTTPS in the window that opens

in the Code section.

https://github.com/googlevr/cardboard-xr-plugin

217

After this preliminary preparation, develop a simple Google VR Cardboard project in Unity.

In Unity 2021.3 or later (here 2022.3.1.14f), create a 3D project. We named our project VRCardboard

in this application.

Go to Window>Package Manager

Open the at the menu by pressing the + key here. Select the Add package from git URL… line.

Paste the link we just copied here and press the Add button.

218

The add-on is now installed in our package manager. If there is any update suggestion, we can do it

by clicking Update.

219

Since the preset scene, which is a template for the package, is located in the Samples section, open it

and import the sample scene named Hello Cardboard.

.

After this process, we can see that the folder is placed in the Project section.

We can close the package manager.

Some computers may not be able to do this, so another way to get the package is to download it as a

ZIP file.

220

After the compressed file is downloaded to the hard disk, open it and extract it.

In the Package Manager, press + and click the Add package from disk option.

The file type Unity is looking for here is JSON. Therefore, we can include the Google VR package in

our project by selecting the package.json file.

The next part continues as described above. Restarting, Update, Sample addition operations are the

same.

221

10.2.Configuring the HelloCardboard Scene

To open the sample scene, go to Assets/Samples/Google Cardboard/<version>/Hello
Cardboard/Scenes.
Let's select Add Open Scenes and select HelloCardboard.

With this selection, the ready scene will appear on the screen. A VR room is seen as the content.

Now, let's change our platform to Android (IOS for Apple). Select File>Build Setting>Android and

click Switch Platform.

222

Let's add our current scene to the Scenes in Build section by clicking Add Open Scenes.

At this stage, we need to make a series of settings. In the Build Settings window, click on Player

Settings. The titles in the settings may vary depending on the version. In this study, version 2022.3 is

taken as basis.

In Player>Icon section, Company Name and Product name can be changed. Here the company name

is changed to DPU.

In the next step, go to the Player Settings>Resolution and Presentation submenu. Uncheck the

Optimized Frame Pacing box.

In the options under Orientation, instead of Auto Rotation, you can select Landscape Right or

Landscape Left. Here Landscape Right is selected.

223

Now, go to the Other Settings section related to the Player. Select ETC2 as the Texture compression

format.

Vulkan Settings> Apply display rotation during rendering box to disable it.

Check if the company name is the same as above.

224

Set the Android level as Minimum API Level>Android 8.0 'Oreo' (API Level 26).

Select Android 13.0 (API Level 33) for Target API Level.

225

On the same page, set the Configuration>Scripting Backend selection to IL2CPP.

 Click the ARM64 box in the Target Architectures section.

Set the Internet Access section to Require.

Note: If the Unity version is 2023.1 or later, select Activity in the Application Entry Point and deselect

GameActivity.

Open the Player>Publishing Settings window. Here, let's select the Custom Main Gradle Template

and Custom Gradle Properties Template boxes.

This last operation caused the Plugins subheading to open in Project>Assets. When we look here, we

see that two files named gradleTemplate and mainTemplate were added under the Android folder.

226

Now, an addition needs to be made to these files. The text of these two code snippets, which can

also be copied from the page

https://developers.google.com/cardboard/develop/unity/quickstart?hl=en and how to add them are

listed below.

First code block of four lines:

 implementation 'androidx.appcompat:appcompat:1.4.2'

 implementation 'com.google.android.gms:play-services-vision:20.1.3'

 implementation 'com.google.android.material:material:1.6.1'

 implementation 'com.google.protobuf:protobuf-javalite:3.19.4'

Let's copy it from here. Let's double-click on the mainTemplate.gradle file to open it. We will be

asked to choose an editor. Notepad is sufficient for this job.

https://developers.google.com/cardboard/develop/unity/quickstart?hl=en

227

Once the file is opened, we need to determine where to copy the copied code block.

Here, paste the codes to the place indicated by the arrow above the **DEPS**} expression and save

it.

Open the second file, i.e. gradleTemplate.gradle, in the same way, for example, with Notepad. As

you can see, this file has relatively short content.

228

Copy the two lines of code given below.

 android.enableJetifier=true

 android.useAndroidX=true

Paste it to the location shown in the file and save it.

Go to Project Settings>XR Plug-in Management and select the Cardboard XR Plugin box.

229

Come to Build Settings. Connect our smart mobile device with developer features enabled to the

computer. Here, Refresh the Run Device section and select the mobile device.

In the window that opens with the Build and Run key, define an APK file name (VROda1) by opening

a new folder (here APK1) or directly in the current location.

After installing the project as an APK file on the phone, the application with two stereoscopically

symmetrical images will start working.

230

A 3D room experience can be achieved by attaching a cardboard headset. The headset moves, and

the Treasure changes color with the Reticler Pointer and can be transported with the button under

the headset.

At this point, we can remove the room and objects on the stage and position a 3D environment of

our design on the stage. In this way, we can achieve 3D experience for many designs.

There are tutorials on the internet that show what happens when the aimer hovers over an object.

Actions that will happen when the object is in the On Click state can be done with C# coding.

10.3.Moving in a VR Scene

Cardboard devices, except Google Daydream, usually do not have a control device. Therefore, the

application is passive in a space and is done by looking around. So, is there no way to move around in

the scene? Yes, there is! This section explains how this can be done with C# Script codes.

We have achieved 3D experience with the VR Room APK file and a cardboard-type headset. Now, first

deactivate the ready scene, namely the Cube Room, GraphicsAPIText, Point Light and Treasure

objects, by deselecting them in the Inspector.

231

In the Asset section, download the Sketchfab>Low Poly City, fbx file that we used before and drag it

to the stage.

Position the Player object in the Hierarchy in the city. Add the Character Controller component to

the Player with Add Component in the Inspector.

To prevent the player from passing through the city and falling under it, select the city object and add

a Mesh Collider with an Add Component in the Inspector.

232

Also, create the C# Script file named Look.cs, whose codes are given below, in the Assets section and

write the following script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Look : MonoBehaviour
{
 public Transform vcam;
 public float toggleAngle=45.0f;
 public float speed = 2.0f;
 public bool moveForward;

 private CharacterController cc;

 // Start is called before the first frame update
 void Start()
 {
 cc = GetComponent<CharacterController>();
 //DontDestroyOnLoad(this);

 }

 // Update is called once per frame
 void Update()
 {
 if (vcam.eulerAngles.x <= toggleAngle && vcam.eulerAngles.x < 90.0f)
 {
 moveForward = true;
 }
 else
 {
 moveForward = false;
 }
 if (moveForward)
 {
 Vector3 forward = vcam.TransformDirection(Vector3.forward);
 cc.SimpleMove(forward * speed);
 }

 }
 }

The code file ensures that the Player stands still when the camera is viewed 45 degrees up and down

and moves forward at angles between them (toggleAngle=45.0f).

233

In the Inspector, when you look at Look (script), you will see that the Vcam section is empty and says

None (Transform).

Drag and match the Main Camera here, which is located under the Player in the Hierarchy.

Go to Build Settings. While our phone is connected, create our APK file by pressing Build and Run.

234

We can open the application on our phone and do the first check. We can test the motion control by

turning the mobile device in all directions.

As a result, we can observe the result in 3D by placing our phone on our cardboard headset. We can

control it by moving our head left and right and up and down and experiencing the VR application.

Some phones may require the Cardboard Google LLC app to be installed from Google Play for this

app to work.

On Google Play, with keywords like VR Player and VR Converter, we can find applications that

convert our mp4 etc. files to VR (for example VR Video Converter and VR Game).

There are also many videos in VR standards on YouTube. For example, a search with keywords such as

VR Video can find many videos suitable for VR viewing and can be watched in 3D on a VR headset.

235

Similarly, for open pit and underground mine gallery scenes, it is possible to deploy on mobile device

and visualize in Google Cardboard headset.

We can walk through and control movements in the scenes by using the C# codes.

Although the Meta Oculus Quest 2/3 tutorial is not taken here, some outputs are given to show the

ability to have VR deployments for mining cases. Here, Meta and Unity MRTK (Mixed Reality Toolkit)

templates are utilized.

236

237

11. AUGMENTED REALITY – AR APPLICATIONS

11.1.Augmented Reality – AR

Augmented reality can be thought of as the merging of virtual assets with the real world. If there is

the possibility of interactive management and intervention with these assets, the term Mixed Reality

is used for this concept.

For augmented reality, special glasses called Smart-Glass, which are usually expensive, are used.

However, smartphones or tablets that everyone can have can also be used for this purpose, although

they do not provide the same experience.

Various engines can be used to develop AR applications with Unity. Examples include AR Foundation,

AR Core, AR Kit, and Vuforia. Due to its practical use and reason, this section will show the Vuforia

application.

11.2.Vuforia AR Engine

This software has Asset downloads that work integrated with the Unity Asset Store. For this purpose,

an account must first be opened on the Vuforia website. Using the same email address as Unity will

be advantageous.

Vuforia's Unity app is located under the Downloads menu, but it is not required for this project.

238

Here it will be necessary to use the License Manager and Target Manager titles for preliminary

preparation.

First, let's select this menu and use the Get Basic button in the window that appears to create a

Database License with the License Manager.

239

In this window, specify the License name and check the agreement box. Continue by clicking

Confirm.

Now, a license has been opened with the name we created on our list.

240

Next step, we can go under the Target Manager. Here, click Add Database to create a database.

Enter the name of the database; here, do not use special characters (such as some Turkish

characters) and spaces like in web page names. Device option is suitable as Type. After naming,

create our database with the Create button.

241

Our database will be visible in the list.

Now, prepare to add an object to the database that opens empty, or you can also use a ready-made

image file.

Here, we set our target image as the GSF Faculty logo. Take the high-resolution file from the faculty

page to the hard disk. File name: GSF-LOGO.png

242

To add this image to our database in Vuforia, all we need to do is type the phrase “GSF-GiT-

Database” that we just created in Target Manager and whose name we see in the list. The window

that opens allows us to upload various visual objects to the database. This object can be a JPEG or

PNG file. It is important to note that the quality of the visual object must be high. For Image Target

type applications, Add Target is selected to upload the visual file we plan to upload.

The window that opens offers options to upload files to the database.

243

Now, upload our target file to the File section with Browse. The file name will be seen as GSF-

LOGO.png. Write 1 to the Width section. GSF-LOGO automatically appears in the Name. Add it with

the Add button.

244

You may be asked to change the properties of the file:

To overcome the problem, the file was saved in JPEG format with Paint and accepted as a problem-

free file. Our file appears in the database list that opens. At this stage, Vuforia performs the test that

appears with the phrase "Processing" to determine the file quality.

245

When we refresh the page after waiting for a short time, it displays the quality level (Rating) out of 5

stars. 5 stars is the strongest considered file quality. The system can work up to 3 stars, but it is likely

to break in the mobile application.

11.3.VUFORIA integration in UNITY project

Now, continue by opening a project in Unity with version 2022.3.5 or higher. In this application,

version 2022.3.14f is used.

Log in to the Unity Asset Store with Windows->Asset Store. Reach the PTC Vuforia Core Samples

section by typing Vuforia Core Samples. If you notice, Unity requires a version of 2022.3.5 or higher.

246

Now, add it to our assets ("Add to Assets") and open it in our project ("Open in Unity"). If we are

using it for the first time, perform the Install process. Then Import.

Add it to our assets ("Add to Assets") and open it in our project ("Open in Unity"). If we are using it

for the first time, go on the Install process. Then, import.

We can accept the warning that there are some updates.

247

Get all the files by clicking Next.

Confirm the information about the update with the Update button.

248

Go to our Scene in the project and see the changes under Assets.

When we go to Assets->SampleResources->Scenes, we see that there are many ready-made scenes.

Here, double-click the 3-Image Target scene.

By Image Tracking, we will see that a UI Canvas has been opened. At the same time, new

GameObjects have been opened in the Hierarchy window.

249

When we double-click on any of the objects starting with Image, sample objects in the 3D part of the

canvas will be seen.

We aim to import the GSF-LOGO into our database, place the 3D object we want on it, and even play

the video.

In order to perform these operations, we need to access the information and database in Vuforia

and import it into the Unity project.

250

11.4.Getting the License Key and Downloading Database from Vuforia to Unity

Let's go to the License Manager section in Vuforia and select GSF-Git.

On the page that opens, there is a license key prepared for use. When we click on it with the mouse,

this long key is copied to memory.

To use this key copied to memory without entering Vuforia every time, we can copy it to Notepad

and save it as a text file.

251

Now, go to the Target Manager in Vuforia. Our goal is to prepare and download the database for

Unity.

Now, switch to our database named GSF-Git-Database with this key. To download the database that

we want to download and have loaded one shape (GSF-LOGO.png) for now, select the box of our

shape as Target Name and press Download Database.

252

Here, Unity Editor should be selected from the options presented to us and Download should be

clicked.

The database compilation process begins.

We can see the downloaded unitypackage file on the hard disk.

Go back to our Unity scene. Here we go to the Assets->Import->Package->Custom Package

submenu.

253

Now, add the package file we just downloaded from Vuforia to our project.

Then, Import.

254

Make the sample objects such as Astronaut, Drone, Oxygen, and Fissure in the Hierarchy section of

our scene invisible by clicking on their boxes.

Now it's time to get our database object instead.

Go to ARCamera and open the settings in the Inspector section. Press Vuforia Engine configuration.

Here, a window will appear where we will enter the Vuforia database key. For this purpose, let's see

the box called App License Key. As you may recall, the key that we memorized in Vuforia License

Manager and that we can save in Notepad so that we can use it in our future work will be placed in

this box.

255

Paste the license key...

After removing the sample objects, we need to place our Image object. To do this, select

Vuforia>Image Target from the menu that opens with the right click of our mouse in the Hierarchy

section.

256

A plane-like object is placed in our scene. Open the menu to the Inspector->Type section of this

object. Click on the From Database option in this menu.

In the new settings that appear, there is a Database option under Type. We will import the database

that we created in Vuforia and download it in unitypackage format here.

257

When you click on the Database section, you see our database in the list that opens. Select it…

258

With the selection, the GSF-LOGO figure will be placed on the Image on the stage.

We plan to place a 3D school model on the Image in the scene. We find a low poly building from

Sketchfab and place it in the Asset folder.

This 3D building model is placed on top of the GSF-LOGO plate taken from our database after various

size reductions and positionings.

259

Now, it is time to deploy our mobile device. For this, the Build Settings window opens. There are

many scenes listed in the Scenes in Build section.

However, since our project is about Image Target/Tracking, the boxes of the ones other than Image

Targets are checked and excluded from the process.

Also, since this will be a mobile application, the Switch Platform process is done by selecting the

Android platform.

260

Now, we can connect our phone with developer features to the computer with a cable and Refresh

the Run Device section.

When we select the Build and Run section, in the window that opens, we create a new folder called

GSFLogoApp with the right click of our mouse to register the application, and we specify the name of

our APK file as GSFLogo.apk.

261

The printout process starts with the save button. It will take a few minutes to complete. Finally, it

returns to our stage, stating that it was successful.

When the application was opened on the phone, the GSF Logo was placed on the computer screen

and tested. As a result, the building was displayed in front of the screen as an augmented reality

application.

262

This application can be added to the displacement and rotation operations called Lean and Touch.

It is also possible to place a Plane instead of placing a 3D model on the logo that comes to the stage

as a plane and turn that Plane into a video player by adding a Video Player.

Another application alternative provided by Vuforia is the application called Ground Plane, which

allows the desired 3D object and video player to be positioned on the ground, independent of any

Image Target, because of ground scanning.

Again, after scanning a 3D space, augmented reality objects can be added to the desired objects or

points.

It is planned to prepare additional notes for this and similar applications. However, independent of

the notes, there are many supporting materials in digital media, primarily their resources.

263

11.5.AR-Vuforia and Multi-Image Target

In addition to the single image-target application under the title of Augmented Reality, a similar

study can be done on multiple images. Essentially, this means placing many images in the Vuforia

Database and ensuring their recognition within an application of Unity. Therefore, a 3D model,

animation or video can be assigned to each shape (picture). In this way, AR studies can also be done

collectively on the pictures in the book (catalogue), called AR-Book (Augmented Reality Book).

Vuforia AR application is based on the principle of converting image file(s) uploaded to a database

created here into a Unity package, downloading them and entering them into the Unity project. Let's

repeat the upload and Unity package downloading process previously done for the GSF logo for the

Engineering Faculty and Dumlupınar University logos.

It is thought that explaining and repeating some parts of the first application from the beginning

would be beneficial, and there will be partial similarities with the previous explanation.

Let's log in to our Vuforia account.

Here we go to the Licenses tab.

All licenses we created before will be opened.

264

Click GSF-GIT and copy its license by clicking with our mouse. This license information will be needed

in our Unity project.

Now, go to Target Manager and select the title we previously named GSF-GIT Database.

265

Here we will see that we have only uploaded an image file named GSF-Logo. Let's click Add Target to

add two logo files.

First, we select the Faculty of Engineering logo file and add it (Add).

(Note: Possible errors are also shown)

266

Here, the letter Ü caused problems because it does not exist in English.

Let's rename and add.

267

Now the upload will start. If we wait a bit and refresh the page, the quality of our shape will be rated

with stars. 4 stars is a quality level that is considered good.

Now, upload the university logo with Add Target.

In the window that opens, select the DPU logo file and add it (Add).

268

Here we encountered another error. Vuforia is a program that distinguishes images. So, try again by

selecting a new file.

Try again after making changes within the warnings or taking the shape from another source.

269

This image file is also rated 4 stars and is available.

270

Then, select all these files and click on Download Database (all), where there are 3 images.

In the window that opens, select the Unity Editor and download it (Download).

Vuforia starts compiling the database for Unity.

In our web browser, we see that the file named GSF-GİTVeri_Tabani.unitypackage has been

downloaded to the hard disk.

271

Create a project in Unity. Click Window>Asset Store>Search Online.

Here, search for Vuforia Core Samples and open it in Unity by selecting it. It will be displayed directly

under the Package Manager. Since we have downloaded it before, we can continue by Importing. If

we have not downloaded it before, we can select Download or Update if there is an update.

Vuforia recommends a minimum Unity version of 2022.3.16.

272

After clicking Import, if a warning comes up that the project will be processed, continue by clicking
Import.

Unity may inform you that there are some updates and ask for confirmation. Press Install/Upgrade.

273

In the window with options for import operations, click Next and then click Import in the window

that opens, which contains many settings.

Finally, if Vuforia has an up-to-date package, it will be updated with Update. Continue by saying

Update.

At the end of this process, we can see that new folders have been created under Project>Assets.

274

Go to the Scenes section under the SampleResources folder. Access Vuforia's rich augmented reality

scenes. In the scenes, select the ImageTarget scene and open this scene with a double click.

Scene will open.

275

Models can be viewed by double-clicking any Image Target in the scene that comes with the UI (User

Interface) Canvas structure.

Since we will be creating our own database, let's disable all Image Target objects and free up the

space of objects in the scene.

The ArCamera is generated already.

Choose Open Vuforia Configuration in the Inspector.

276

In the incoming menu, go to the window that says App License Key.

Remember the license key we copied in Vuforia. We memorized it, but if there is other information

written on it, copy it again.

277

Paste the key into the App License Key section in Unity.

278

Now, drag the GSF-GiT-Data-Base.unitypackage file that we downloaded from Vuforia to the Assets

section of our project.

A window will open where we can see the package content and our JPG files. Click Import.

At this stage, we need to create new Image Target objects instead of the ones we made passive.

Open a window with the right mouse button in the Hierarchy section and click the Vuforia Engine

option. An object named Image Target will be added to our object list. Since we will be working with

three targets (multiple), repeat this process twice more and increase the number of Image Targets to

three.

279

We can name each one to avoid confusion.

Double-clicking on one of these target objects in the Hierarchy will bring the scene into focus.

Clicking on the other two will reveal that all three are on top of each other.

280

So, reposition the plane image objects so that they are next to each other in the scene.

Now, it's time to match these white cards with the images in our database. To do this, first select the

Image GSF object. In the Inspector section, select From Database under the Type option.

Here, select the database we created in the Database section.

Then, select the GSF-LOGO file as the Image Target in this database. After the selection, the match is

made automatically without any further action.

281

The GSF-LOGO shape is matched with the Image Target object in the scene.

However, for the shape to be compatible with the target, the image must be selected and resized.

Now, select the Image Target object and repeat the same process for it.

282

Adjust the place and position of the image.

283

Finally, match the third image to the Image DPU target.

Adjust the place and position of the image.

284

A dark background photo was used here for the DPU logo, but a white background image would be

more functional.

Three images can be placed in the frame by changing the ARCamera position.

When Image Target objects are selected, if a scale warning appears in the Advanced section, click Fix

Scale and then confirm with Ok.

285

At this stage, the kind of operation that will be done on the image/photo displayed with the

augmented reality camera should be determined.

As you may recall, in our single Image Target application, we used the Modern Tower Official

Complex Building Apartment model from the Sketchfab site.

We matched it with GSF-LOGO, and when we brought the phone/tablet to this picture, the building

opened in 3D.

Now, assign the Image Target images of the three in a similar way. For this purpose, we can use

Unity Asset Store or Sketchfab.

In the multi-target shape application, three building models were downloaded from Sketchfab,

whose names are shown in the figure.

The buildings were brought into the scene one by one, scaled, rotated and moved to position them

on the cards. They were also dragged into and connected to the Image Targets in the Archive.

286

The image on the game window is given below.

287

11.6.Deployment into Mobile Devices

Let's repeat the steps in the Single Image Target application here. This will open the Build Settings

window. There are many scenes listed in the Scenes in Build section.

However, since our project is about Image Target, the boxes of the ones other than Image Targets are

checked and excluded from the process.

Also, since this will be a mobile application, the Switch Platform process is done by selecting the

Android platform.

288

Let's connect our phone with developer features to the computer with a cable and Refresh the Run

Device section.

Go to the Player Settings section and specify the Company Name and application logo. In the Graphics

API section, delete the Vulkan and OpenGLE2 options other than OpenGLES3 with the "-" key.

289

In the Identification>Package Name section, change the package name to match the definition above;

com.DPU.VuforiaM

290

When we select the Build and Run section, in the window that opens, we create a new folder named

VuforiaM with the right click of our mouse to register the application, and we specify the name of our

APK file as VuforiaM.apk.

291

The deployment process starts with the save button. It will take a few minutes to complete. Finally, it

returns to our stage, stating that it was successful.

When the application was opened on the mobile device, it was tested on an A4 paper with three logos.

As a result, the buildings matched with the three images were displayed as an augmented reality

application.

292

Wherever the app sees three logos, whether individually or in groups, it will display the building

model matched on top of the logos in augmented reality format.

Logos will be displayed individually or in groups on wall posters, computer screens, business cards or

documents.

The size of the matched models and their angles relative to the camera can be adjusted by the

developer.

11.7.Augmented Reality with Video Player

In this application, let's place a Plane instead of a 3D model on one of the cards. Here, the DPU logo

is used. Adjust the size and position of the Plane so that it is on top of the logo.

293

Now, add a Video Player with Add Component in the Inspector section of the Plane.

Drag and connect a video file that we prepared before to the Video Player>Video Clip section that

we added to the Plane and activate the Loop box. Connect the Plane under Image DPU.

When we start the application on our phone, it will see the DPU logo, and the matching video will

play on it. If desired, the sound of the video can be turned off by clicking the Mute check box.

After getting information about single and multi Image Target applications, we can continue with

Ground Plane, which is the application type where the model is displayed by scanning on the

ground/surface without the need for any image…

294

11.8.Vuforia AR – Ground Plane

One type of augmented reality application is to open models directly on the ground plane without a

target. In this study called Ground Plane, we will continue from the point reached in single and

multiple target (Image Target) applications.

As you may recall, we downloaded the Vuforia Core Samples asset from the Asset Store and applied

single and multiple targets (Image Target) to our project. Let's continue with the same project.

There are many AR application scenes available under SamplesResources>Scenes in the Assets

section.

Now, open the Ground Plane scene from these AR models by double-clicking on it.

The Ground Plane scene is a template with a rocking chair model inside a UI (user interface)

framework.

295

Since we want to open our model on the ground, make this object named Chair passive. For this

purpose, access the chair with Hierarchy>PlaneManager>Anchor_Placement>Chair and uncheck its

box to make it invisible.

296

Use the low poly city model found on Sketchfab, which we use from time to time in Unity tutorials.

297

During the preparation phase of the scene, we will need the license key we created earlier on the

Vuforia site. For this purpose, GSF-Git > License Key, located in the Vuforia Licenses section, will be

used.

298

After copying the license key, click Inspector>Open Vuforia Engine configuration in ARCamera.

Since we are on the same project, we see that this key is already in the App License Key section. If

we are in a new project, we will need to paste it here.

299

Drag the Sketchfab, low poly city, fbx file into Assets.

Then, position it in the Ground Plane area on the stage by minimizing it and using the gizmo to

control it from the top, right and left.

300

Drag and attach the model file under PlaneManager>Anchor_Placement. Check that the Chair object

is inactive.

After the scene design, open the File>Build Settings window. Here, the Android (IOS for iPhone)

platform should be switched to, and only Ground Plane should be selected from the scenes.

Connect the mobile device and check.

301

Make a few changes to the Player Settings to prevent applications from being overwritten.

We named this application VuforiaGP as the Production Name. We ensured that the same name was

used in the Package Name section. The abbreviation GP is considered a Ground Plane. Of course,

every designer can create a naming system.

302

When we click on the Build and Run section, we will be asked in which folder the application will be

created and its name. Enter our preference for this project; VuforiaGP.apk

The application will be created on both the disk and the phone by clicking the save button.

After opening the application on the mobile device, the ground/surface scan is performed. When the

honeycomb texture is seen, the model can be loaded onto the surface/ground.

303

By touching the honeycomb, the model will appear here.

Turning the mobile device allows the honeycomb to be viewed in different locations and sizes, and

the model reappears at that point.

The same model is displayed in front of the computer below.

304

Another issue is the UI (interface) texts seen on the screen. Texts such as Product Placement, Tap to

place Chair, Touch and Drag to move Chair, Two fingers to rotate are templates and are for the

disabled chair and can be changed. For a change, the relevant lines can be found in the script (C#

code) files and changed with the desired expressions.

305

Even the honeycomb - reticle_ground_surface (sight) and other similar figures seen on the screen

under Sprites can be changed.

Although the commands include dragging and rotating the model on the mobile device screen, if

these features do not work, the asset named Lean Touch can be downloaded and used from the

Unity Asset Store. Information about this is included in the asset introduction.

306

In the example, mineral processing machines are used for Image Target application of Vuforia. After

Importing process of Lean Touch asset, right-click on Hierarchy window and add Lean Touch object.

Now, we can add the related Lean Touch components to the objects located on the scene. For each

asset, Lean Drag Translate, Lean Pinch Scale, Lean Twist Rotate and Lean Twist Rotate Axis

components are added (e.g., SAG mill). Drag the ARCamera to the components in the Inspector

having Camera use.

As a result, when the APK file is run, SAG mill object can be controlled by fingers. It can be dragged,

scaled and rotated.

307

11.9.Similar Examples for Mining

The applications developed for an open pit mine and a quarry are given below. One is in front of the

computer, and the other is on the floor of the university corridor.

308

Although, Hololens 2 applications are not included in the book, some of deployments are shown to

give an idea.

309

12. USE OF ANIMATION AND ADOBE MIXAMO CHARACTERS IN UNITY

Adobe Mixamo (www.mixamo.com) has a large library of characters and animations. The characters

and animations found here can be combined and turned into interactive animations in the animator

editor in Unity.

In this application, we can download a worker armature (body) and some animations from Mixamo

and how we can control it with C# coding developed in Unity.

Let's download the root stance of the selected character, T-Pose. Here, from the window that

appears with the Download button, download it by selecting the FBX For Unity (.Fbx) line.

Now, search for the word Idle under the Animations tab and choose one of the many options that

appear that we find appropriate. With this choice, the animation is combined with our character in

the T-Pose state and plays on it. Download this by clicking the Download button and selecting Unity.

310

Similarly, search for Walking, Running and Jumping animations, observe them on the worker and

download them in the same way.

311

Now, collect the downloaded files in a folder to place in the Assets section of the Unity project we

will create. [Extra kneeling and CPR are also included here]

312

Open our Unity project. Place our folder (Worker Ch17_nonPBR) in the Assets section.

Before we import the character into our scene, we need to make some presets on the FBX files.

When we select the Ch17_nonPBR file with the T-Pose position, we see that it has no colors. Let's

assign its textures. Extract the textures to a folder by clicking Materials>Textures>Extract Textures.

When you click on Extract Texture, you will be asked which folder the textures will be extracted to.

We will need to open this folder, right-click, give it a name, and select it.

313

Here, the folder was created by naming it Textures. Select it with Select Folder.

If there is a need for correction in texture assignments, it warns. Fix this by saying Fix Now.

Thus, the colors of the worker character appear.

Now, see a series of operations that need to be done on all FBX files. The Animation Types in the Rig

section of all downloaded character files must be converted to Humanoid form.

314

Also, some animations need to have some repetition motion. Below, the changes made under

Animations are shown in two consecutive frames.

Here;

* Loop Time and Loop Pose boxes should be activated (checked).

* Root Transform Rotation > Bake Into Pose should be active and turn Based Upon into Original.

* Root Transform Position (Y) > Bake Into Pose should be active.

315

In this way, all FBX files should be converted to Humanoid form, changes should be made in the

Animations section and Apply should be done.

After the operations on the files included in the project are completed, we can move on to the

animation and animator phase.

Let's add a Terrain to our scene to provide freedom of movement.

Then, position the Idle (fbx with T-Pose) file and the Main Camera to see it.

If you notice, since the characters have animation, the Animator tab also appeared next to the Scene

tab. If this is not opened, we can open it by pressing Windows>Animation>Animator.

Create a folder under Assets named Create>Folder>Character Animator and go into it.

316

Here, create an animator controller with Create>Animator Controller and name it WorkerController.

When this process is done, three states are created in the editor in the Animator tab, including Any

State, Entry and Exit blocks.

First, make animations of the transition from the idle position to walking and running states.

Drag and drop the Idle animation listed under the Idle fbx file to the animator editor. The

Idle status will appear in the editor.

Also, a link will be automatically established from Entry to Idle status.

317

Another process is to connect the controller named Assets>Character Animator>WorkerController

to the empty Inspector>Animator>Controller section of our Ch17_nonPBR object in Hierarchy.

When we switch to Player Mode, we see that our worker no longer stands in T-Pose and makes slight

oscillations in the Idle position.

318

See the method that is normally used to establish a connection between states in the next step. Since

the walking and running movements are connected and transitional, create a state that will blend

them. Right-click in the editor and select Create State>From New Blend Tree.

Change the name of this state to Hareket. The Blend Tree state can also be thought of as an

organizer where a mix of movements can be made and passed.

Another noteworthy point is that a parameter called Blend has been created in the Parameters

section of the Animator tab.

Right-click on the Parameters>Blend parameter and delete it with Delete.

319

Instead, let's press + and add a Float type parameter, which is preferred in transition animations and

which we will call hiz.

When we double-click on the movement, a layout and inspector will appear.

When the Blend Tree box is selected, hiz must be selected as the Parameter.

In this case, the adjustment line is also displayed in the Blend Tree box.

320

We can start adding motions to blend. Add a motion field with Inspector>Motion>+>Add Motion

Field.

Let's drag the Assets>Worker Ch17_nonPBR>Walking animation to the opened area. This process

also added the Walking animation to the Blend Tree (Hareket).

Drag our other animation Running to Inspector>Motion>+>Add Motion Field.

321

Here, the Parameter graph shows the Walking-Running transition from 0 to 1. Start the animation in

the Hareket animation preview window below and test how it accelerates from walking to running

by increasing the hiz setting on the Hareket box in the animator from 0 to 1.

So, with Blend Tree we have achieved the blending and transition of two animations.

Now, go to the Base Layer and create a link between Idle and Hareket (Blend Tree). To do this, right-

click on Idle and add a link to the Hareket box with Make Transition. Similarly, add a link to Idle from

the Hareket box (state) with Make Transition.

Click on the direction arrow between Idle and Hareket to switch from Idle to Hareket (Blend Tree). In

the Inspector section, uncheck the Has Exit Time box. We should add the condition that will provide

the transition to the Conditions section. By pressing +, the number box where we will specify the

number that is the hiz parameter and the walking condition [Greater] comes to the list. We can

enter a value like 0.1 here.

322

For the worker to stop, the hiz parameter must be less than 0.1 (Less). For this,select the arrow in

the opposite direction. Unselect the Has Exit Time box and add to Conditions with +. Here, select

Less instead of Greater and write 0.1 in the hiz box.

Thus, we have completed the necessary operations in the animator section. Now, when the speed

(hiz) goes above 0.1, it walks (Walking); above 0.5, it starts running (Running); and below 0.1, it stops

(Idle).

Now it's time for the keystroke to trigger these movement processes. Here, we need to provide stop-

walk-run controls when a key is pressed on the keyboard. Therefore, we have to code the C# script.

Let's create a file under Assets with Create>C# Script. WorkerControl is used as the file name here.

Double-click on the WorkerControl.cs file created under Assets and open it in Visual Studio. If Visual

Studio is not installed, it will open in the editor we specified as Preferences>External Tools>External

Script Editor (example: Notepad).

323

Now, connect the script file we created to our worker on the scene.

The WorkerControl.cs file content is given at the end of the topic. However, before using it, Standard

Assets should be imported for camera control. This asset belongs to Unity Technologies and is not

currently available in the Asset Store. However, it is available on the course's Google Drive.

After the import process of the Standard Assets package is completed.

Assets>Standard Assets>Cameras>Prefabs>FreeLookCameraRig

324

We will add the camera named above to our scene. The purpose here is to follow the worker's

movements from different angles depending on the mouse.

Connect this camera to our scene, to our Ch17_nonPBR worker object. Remove the Main Camera to

avoid conflicts.

In order for the camera to follow the worker, the worker object (Ch17_nonPBR) in the Hierarchy

must be connected to the FreeLookCameraRig's Inspector>Free Look Cam (Script)>Target.

325

In this way, the camera can be rotated around the worker with mouse movements.

Another thing that is missing is the worker being able to turn in the direction the camera is pointed at

and look at the camera.

This has been achieved by adding the FreeLookCameraRig camera and coding accordingly.

Before switching to play mode, it will work after advancing to the end of the topic, writing the code

file completely or downloading it from Google Drive and connecting it to our worker object. It is

important to follow the live narration in the course to avoid any problems.

The operations performed up to this point were performed for standing, walking and running

movements. Due to the transitional nature of walking and running, Blend Tree and Float were used

as parameter type.

Now, see how to integrate some animations that we downloaded from Mixamo. Here, assuming that

there is no transitional movement, we will cover the system binding of the jumping, kneeling and

administering Cpr animations. These movements will be linked to the Idle position. Jumping and

kneeling will be linked directly to Idle, while Administering Cpr will be linked to the Kneeling

movement.

Let's start with Jumping.

Come to our animator window.

326

Drag the animation named Jumping under

Assets>WorkerCh17_nonPBR>Ch17_nonPBR>Ch17_nonPBR@Jumping to the animator.

To establish the connection between Idle and Jumping, right click on Idle and use the direction line

with Make Transition. Similarly, right click on Idle from Jumping and establish the connection line

with Make Transition.

Now, we need to specify which parameter we will use to provide this connection. Add a Bool type

parameter to the Parameters section with +. Here the name zipla is given.

327

At this stage, select the Idle->Jumping link. In the Inspector, unselect Has Exit Time. In Conditions,

select zipla from the list by pressing +. We don't change the true selection because it will jump when

the key is pressed.

Similarly, select Jumping->Idle link. In the Inspector, unselect Has Exit Time. In Conditions, select

zipla from the list that opens with + and set its condition to false.

Test this animation, which is connected to the Space bar key in the code line, by pressing the Space

bar while in Idle mode in Play mode.

Similarly, add the Kneeling Down animation. Drag the relevant animation file from Assets to the

animator. Establish the connections with Idle. Add the Bool type variable to the Parameters section.

328

Make the true and false selections by adding the Has Exit Time and Conditions lists in the

connections.

 In the coding, the Z key was used in the laptop collapse animation. When you press Z, the laptop will

collapse and when you pull it, it will rise. After testing in player mode, let's move on to our other

movement.

Here, connections were established between Kneeling Down and Administering Cpr with Make

Transition’s. Bool type kalp variable was added to Parameters. In the Inspector, Has Exit Time and

Conditions->kalp; true and false operations were done with similar repetitions.

After setting the codes to press the X key, test it in Play mode.

329

12.1.Relevant C# Script Codes

Let's create a C# file named WorkerControl.cs under Assets. The file name should not be different

from this.

The reason for this is that the file name and the class name inside must be the same.

public class WorkerControl : MonoBehaviour

Codes can be created by writing them in the Visual Studio editor or an editor such as Notepad, or by

copying/pasting the file content given below.

The more practical way is to use the ready-made version of the file.

The script file is also located in the C# Script Files folder of Google Drive, where the course

documents are located.

After downloading this file from Drive, it can be placed in the Assets section of the project and linked

to our Ch17_nonPBR object.

The scene was tested in this environment as well, by adding a low-poly city (from Sketchfab) and a

casualty lying on the ground (from Mixamo) to make it an emergency response scenario for a

casualty.

330

It is also possible to download animations for right, left and backward movements from Mixamo, add

them to the animator and add coding.

Here;

A: left, S: back, D: right, R: 180º rotation

It is coded to ensure orientation.

The final version of the WorkerControl.cs code file with these additions is below and on Google

Drive.

/*** WorkerControl.cs ***/

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class WorkerControl : MonoBehaviour
{
 Animator adamAnim;
 float maxspeed;
 float axisZ;
 Camera mainCam;

 // Start is called before the first frame update
 void Start()
 {

331

 adamAnim = GetComponent<Animator>();
 mainCam = Camera.main;

 }

 // Update is called once per frame
 void Update()
 {
 if (Input.GetKey(KeyCode.W)) // walking
 { maxspeed = 0.3f;
 axisZ = maxspeed * Input.GetAxis("Vertical");
 if (Input.GetKey(KeyCode.W) && Input.GetKey(KeyCode.LeftShift)) // running
 { maxspeed = 1.0f;
 axisZ = maxspeed * Input.GetAxis("Vertical"); }
 }
 else // standing
 { maxspeed = 0.0f;
 axisZ = maxspeed* Input.GetAxis("Vertical");
 }
 // walking to right
 if (Input.GetKeyDown(KeyCode.D))
 { adamAnim.SetBool("saga", true); }
 if (Input.GetKeyUp(KeyCode.D))
 { adamAnim.SetBool("saga", false); }

 // walking to left
 if (Input.GetKeyDown(KeyCode.A))
 { adamAnim.SetBool("sola", true); }
 if (Input.GetKeyUp(KeyCode.A))
 { adamAnim.SetBool("sola", false); }

 // walking back
 if (Input.GetKeyDown(KeyCode.S))
 { adamAnim.SetBool("geri", true); }
 if (Input.GetKeyUp(KeyCode.S))
 { adamAnim.SetBool("geri", false); }

 // jumping
 if (Input.GetKeyDown(KeyCode.Space))
 { adamAnim.SetBool("zipla", true); }
 if (Input.GetKeyUp(KeyCode.Space))
 { adamAnim.SetBool("zipla", false); }

 // kneeling
 if (Input.GetKeyDown(KeyCode.Z))
 { adamAnim.SetBool("dizustu", true); }
 if (Input.GetKeyUp(KeyCode.Z))
 { adamAnim.SetBool("dizustu", false); }

 // heart massage-artificial respiration
 if (Input.GetKeyDown(KeyCode.X))
 { adamAnim.SetBool("dizustu", true);
 adamAnim.SetBool("kalp", true); }
 if (Input.GetKeyUp(KeyCode.X))
 { adamAnim.SetBool("dizustu", false);
 adamAnim.SetBool("kalp", false); }

 // to switch between the animations Vector3.ClampMagnitude can be used
 // to do this a variable like Vector3 is necessary; it is named (vektor) here

 Vector3 vektor = new Vector3 (0, 0, axisZ);

 adamAnim.SetFloat("hiz", Vector3.ClampMagnitude(vektor, 1f).magnitude, 1f, Time.deltaTime * 3f);

332

 //adamAnim.SetFloat("hiz", maxspeed);

 // to make the worker and the assigned Free Look Camera follow the mouse

 Vector3 kameraYon = mainCam.transform.TransformDirection(vektor);
 kameraYon.y = 0.0f;
 transform.forward = Vector3.Slerp(transform.forward, kameraYon, Time.deltaTime * 3f);

 //transform.forward = kameraYon;
 }
}

In this way, some animations required for a wounded intervention scenario have been fulfilled.

It should not be forgotten that a healthy project is more possible in a classroom environment and in

live lessons. Because in this way, there is a chance to intervene in problems that may occur in the

processes of the trainees.

333

BIBLIOGRAPHY

Abbaszadeh, S., and Rastiveis, H. (2017). “A comparison of close-range photogrammetry using a non-
professional camera with field surveying for volume estimation,” in ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W4, (Heipke:
International Society for Photogrammetry and Remote Sensing), 1–4. DOI: 10.5194/isprs-archives-
XLII-4-W4-1-2017.

Aerial-Craft (2022). Rawang Mine Quarry, Malaysia. Retrieved from https://sketchfab.com/3d-
models/rawang-quarry-2a-11jan17-malaysia-f3eae47abe694f36a9a98578315acc1e

Adams, D. M., Pilegard, C., & Mayer, R. E. (2016). Evaluating the cognitive consequences of playing
portal for a short duration. Journal of Educational Computing Research, 54(2), 173–195.

Ahmad, S. M. S., Fauzi, N. F. M., Hashim, A. A., & Zainon, W. M. N. W. (2013). A study on the
effectiveness of computer games in teaching and learning. International Journal of Advanced Studies
in Computers, Science and Engineering, 2(1), 1.

Ahn, J., Ahn, E., Min, S., Choi, H., Kim, H., and Kim, G. J. (2019). “Size perception of augmented objects
by different AR displays,” in HCI International 2019—Posters, Vol. 1033, ed. C. Stephanidis (London:
Intech Open), 337–344. DOI: 10.1007/978-3-030-23528-4_46

Al-Ansi, A.M., Jaboob, M., Garad, A., Al-Ansi, A., 2023. Analyzing augmented reality (AR) and virtual
reality (VR) recent development in education. Social Sciences & Humanities, Volume 8, Issue 1, 1-10.

Aldrich, C. (2009). Virtual worlds, simulations, and games for education: A unifying view. Innovate:
Journal of Online Education, 5(5), 1.

Alhalabi, W. S. (2016). Virtual reality systems enhance students’ achievements in engineering

education. Behaviour & Information Technology, 35(11), 919-925.

https://doi.org/10.1080/0144929X.2016.1212931.

Aloqaily, M, Bouachir, O and Karray, F, 2023. Digital twin for healthcare immersive services:

fundamentals, architectures, and open issues, Digital Twin for Healthcare, Ed. El Saddik, A., Academic

Press, 39-71, ISBN 9780323991636,

https://www.sciencedirect.com/science/article/pii/B9780323991636000081.

American Society for Photogrammetry and Remote Sensing (2019). What is ASPRS?. Available online

at: https://www.asprs.org/organization/what-is-asprs.html

Apple Vision Pro, 2024. https://www.apple.com/apple-vision-pro/

Atay, (2024). Atay Holding, https://www.atay.com.tr/atay-holding-alm-m.

Azuma, R.T., (1997). A survey of augmented reality. Presence: Teleoperators and Virtual

Environments, 6(4), 355-385.

Bartlett, J. D., Lawrence, J. E., & Khanduja, V. (2018). Virtual reality hip arthroscopy simulator

demonstrates sufficient face validity. Knee Surgery, Sports Traumatology, Arthroscopy.

https://doi.org/10.1007/s00167-018-5038-8.

https://sketchfab.com/3d-models/rawang-quarry-2a-11jan17-malaysia-f3eae47abe694f36a9a98578315acc1e
https://sketchfab.com/3d-models/rawang-quarry-2a-11jan17-malaysia-f3eae47abe694f36a9a98578315acc1e
https://www.sciencedirect.com/science/article/pii/B9780323991636000081
https://www.asprs.org/organization/what-is-asprs.html
https://www.apple.com/apple-vision-pro/
https://www.atay.com.tr/atay-holding-alm-m
https://doi.org/10.1007/s00167-018-5038-8

334

Beckem, J. M., & Watkins, M. (2012). Bringing life to learning: Immersive experiential learning
simulations for online and blended courses. Journal of Asynchronous Learning Networks, 16(5), 61–
70.

Bellanca, J. L., Orr, T. J., Helfrich, W. J., MacDonald, B., Navoyski, J., & Demich, B. (2019). Developing a
virtual reality environment for mining research. 2019 SME Annual Conference and Expo and CMA
121st National Western Mining Conference, 597–606.

Bhai, R., (2024). Factory 3D Model, https://sketchfab.com/3d-models/factory-3d-model-
e723f4fe48ec4b9da52ec6e4a442286b

Buckless, F. A., Krawczyk, K., & Showalter, D. S. (2014). Using virtual worlds to simulate real-world
audit procedures. Issues in Accounting Education, 29(3), 389–417.

Capturingaworld, (2024). Roadstone Quarry, Allenwood, Sketchfab. https://sketchfab.com/3d-
models/roadstone-quarry-allenwood-3d-mesh-1e14c3c1c67347d7b1e0de7eeb3de996.

Cheng, K.H. and Tsai, C.C. (2012). Affordances of augmented reality in science learning: Suggestions
for future research. Journal of Science Education and Technology, 22, 449-462. DOI: 10.1007/s10956-
012-9405-9.

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. London: Routledge.

DePorres, D., & Livingston, R. E. (2016). Launching new doctoral students: Embracing the Hero’s
journey. Developments in Business Simulation and Experiential Learning, 43(1), 121–128.
Engati, 2024. Augmented Reality application. https://www.engati.com/glossary/augmented-reality

El Jamiy, F., and Marsh, R. (2019). Survey on depth perception in head mounted displays: distance

estimation in virtual reality, augmented reality, and mixed reality. IET Image Process. 13, 707–712.

DOI: 10.1049/iet-ipr.2018.5920.

Erarslan, K., (2022). Augmented Reality Applications on Quarries and Mines, Journal of Scientific
Reports-B, 3, June, 13-24.

Fedorko, G. (2021). Application possibilities of virtual reality in failure analysis of conveyor belts.

Engineering Failure Analysis, 128(May), 105615. https://doi.org/10.1016/j.engfailanal.2021.105615

Fei, D., & Anbi, Y. (2011). Safety education based on virtual mine. Procedia Engineering, 1922-1926.

Fischer, X., (2024). Asperge Cavity full 3D Network and Landmarks, Sketchfab,

https://sketchfab.com/3d-models/realistic-underground-basecave-40-

46466ec0558945e9aac9dad15aaeb9f3.

Fonseca, H, (2024). Coal Mill, Grabcad, https://grabcad.com/library/13-coal-mill-department-1.

Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., and Carbonneau, P. E. (2013). Topographic

structure from motion: a new development in photogrammetric measurement. Earth Surf. Process.

Landforms 38, 421–430. DOI: 10.1002/esp.3366.

Foster, P. J., & Burton, A. (2006). Modelling potential sightline improvements to underground Mining

vehicles using virtual reality. Institution of Mining and Metallurgy. Transactions. Section A: Mining

Technology, 115(3), 85–90. https://doi.org/10.1179/174328606X128714

https://sketchfab.com/3d-models/roadstone-quarry-allenwood-3d-mesh-1e14c3c1c67347d7b1e0de7eeb3de996
https://sketchfab.com/3d-models/roadstone-quarry-allenwood-3d-mesh-1e14c3c1c67347d7b1e0de7eeb3de996
https://www.engati.com/glossary/augmented-reality
https://sketchfab.com/3d-models/realistic-underground-basecave-40-46466ec0558945e9aac9dad15aaeb9f3
https://sketchfab.com/3d-models/realistic-underground-basecave-40-46466ec0558945e9aac9dad15aaeb9f3
https://grabcad.com/library/13-coal-mill-department-1
https://doi.org/10.1179/174328606X128714

335

Franklin, G., (2024). Latform for Jaw Crusher, Grabcad, https://grabcad.com/library/plataform-for-

jaw-crusher-1

Freina, L., & Ott, M. (2015). A Literature Review on Immersive Virtual Reality in Education: State of

the Art and Perspectives. eLearning & Software for Education, (1).

Game Developer, 2024. https://www.gamedeveloper.com/game-platforms/exploring-the-pc-game-

engine-landscape

Garcia, F., (2024). Platform for Jaw Crusher, Grabcad. https://grabcad.com/library/plataform-for-jaw-
crusher-1

Gegenfurtner, A., Quesada-Pallarès, C., & Knogler, M. (2014). Digital simulation-based training: A
meta-analysis. British Journal of Educational Technology, 45(6), 1097–1114. HTC Vive VR Headset.
https://www.vive.com/us/

Geithner, S., & Menzel, D. (2016). Effectiveness of learning through experience and reflection in a
Project Management simulation. Simulation & Gaming, 47(2), 228–256 (2016). Doi:
1046878115624312.

GEOPS U-Paris-Saclay, (2024). Malpierre Quarry, Sketchfab. https://sketchfab.com/3d-

models/malpierre-34085fa5c4d04335882f25f3b4ee94e7

GeoWeek News, 2024. Hololens mining 3d data revolution.
https://www.geoweeknews.com/news/hololens-mining-3d-data-revolution

Giovanello, S. P., Kirk, J. A., & Kromer, M. K. (2013). Student perceptions of a role-playing simulation
in an introductory international relations course. Journal of Political Science Education, 9(2), 197–
208.

Glen, I., (2024). A longwall coal mine layout with shearing machine, 3D Warehouse,
https://3dwarehouse.sketchup.com/model/5dfdd8d8f02863aa873da0b62456d2f9/UG-Longwall-
coal-mine-layout-with-shearing-machine-track-roof-support

Grabcad, (2024). https://grabcad.com

Gupta, P., 2021. VR simulation solutions for the mining industry-2. Tecknotrove.
https://tecknotrove.com/newsletter/vr-simulation-solutions-for-the-mining-industry-2/

Gül, Y (2019). Açık Maden İşletmelerinde İnsansız Hava Aracı (İHA) Uygulamaları. Jeoloji Bülteni. Cilt
62, Sayı 1, 99 - 112, 01.01.2019. https://doi.org/10.25288/tjb.519506.

Gürer, S., Sürer, E., Erkayaoğlu, 2023. MINING-VIRTUAL: A comprehensive virtual reality-based
serious game for occupational health and safety training in underground mines. Safety Science, 166,
1-13.

Gürer, S., 2021. Development of a Virtual Reality-Based Serious Game for Occupational Health And
Safety Training in Underground Mining, Middle East Tech Univ, MSc Dissertation, 91 pg.

Huang, H.-M., Rauch, U., & Liaw, S.-S., 2010. Investigating learners’ attitudes toward virtual reality
learning environments: Based on a constructivist approach. Computers and Education, 55(3), 1171-
1182. https://doi.org/10.1016/j.compedu.2010.05.014.

https://www.gamedeveloper.com/game-platforms/exploring-the-pc-game-engine-landscape
https://www.gamedeveloper.com/game-platforms/exploring-the-pc-game-engine-landscape
https://www.vive.com/us/
https://grabcad.com/
https://tecknotrove.com/newsletter/vr-simulation-solutions-for-the-mining-industry-2/
https://doi.org/10.1016/j.compedu.2010.05.014

336

Huang, Hsiu-Mei, & Liaw, S.-S., 2018. An Analysis of Learners’ Intentions Toward Virtual Reality

Learning Based on Constructivist and Technology Acceptance Approaches. The International Review

of Research in Open and Distributed Learning, 19(1). https://doi.org/10.19173/irrodl.v19i1.2503

Hugues, O., Gbodossou, A., & Cieutat, J.-M. (2012). Towards the Application of Augmented Reality in

the Mining Sector: Open-Pit Mines. International Journal of Applied Information Systems, 4(6), 27–32.

https://doi.org/10.5120/ijais12-450760

IoT & Industry 4.0, (2020). b.telligent. https://www.btelligent.com/en/portfolio/industry-40/

Kanani, H. (2019). AR and VR in Mining Industry : Transforming the Future. Plutomen, Oct.1,

https://pluto-men.com/ar-and-vr-in-mining-industry-transforming-the-future/#

Kavanagh, S., Luxton-Reilly, A., Wuensche, B., & Plimmer, B. (2017). A Systematic Review of Virtual

Reality in Education. Themes in Science and Technology Education, 10(2), 85-119.

Kebo, V., & Staša, P. (2012). Mining processes control and virtual reality. Proceedings of the 2012 13th

International Carpathian Control Conference, ICCC 2012, 274–277.

https://doi.org/10.1109/CarpathianCC.2012.6228653

Kelly, l, 2022. The Drift: Device bringing augmented reality to the mining face. Northern Ontario

Business. https://www.northernontariobusiness.com/industry-news/mining/the-drift-device-

bringing-augmented-reality-to-the-mining-face-5772449

Kesim, M. & Özarslan, Y. (2012). Augmented reality in education: current technologies and the

potential for education. Procedia - Social and Behavioral Sciences, 47, 297-302.

Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in

education: Seven years of forecasts and convergence. Computers and Education, 57(3), 1893-1906.

Kim, H., & Choi, Y. (2019). Performance comparison of user interface devices for controlling mining

software in virtual reality environments. Applied Sciences (Switzerland), 9(13).

https://doi.org/10.3390/app9132584.

Kirner, T.G., Reis, F.M.V., & Kirner, C. (2012). Development of an interactive book with Augmented

Reality for teaching and learning geometric shapes. Information Systems and Technologies (CISTI), 1-

6.

Kunz, B. R., Wouters, L., Smith, D., Thompson, W. B., and Creem-Regehr, S. H. (2009). Revisiting the

effect of quality of graphics on distance judgments in virtual environments: a comparison of verbal

reports and blind walking. Atten. Percept. Psychophys. 71, 1284–1293. DOI: 10.3758/APP.71.6.1284.

Jones, R., & Bursens, P. (2015). The effects of active learning environments: How simulations trigger
affective learning. European Political Science, 14(3), 254–265.

Kızıl, M. ve Joy, J. (2001). What can Virtual Reality do for Safety? University of Queensland, St. Lucia
QLD.

Kızıl, M. S., Kerridge, A. P., and Hancock, M. G. (2004). Use of virtual reality in mining education and

training. CRCMining Conference, Noosa Head, Queensland, Australia, 15-16 June 2004. Brisbane,

Australia: Cooperative Research Centre - Mining (CRCMining).

https://doi.org/10.19173/irrodl.v19i1.2503
https://www.btelligent.com/en/portfolio/industry-40/
https://www.northernontariobusiness.com/industry-news/mining/the-drift-device-bringing-augmented-reality-to-the-mining-face-5772449
https://www.northernontariobusiness.com/industry-news/mining/the-drift-device-bringing-augmented-reality-to-the-mining-face-5772449
https://doi.org/10.3390/app9132584

337

Li M., Sun, Z., Jiang, Z., Tan, Z. ve Chen, J., 2020. A Virtual Reality Platform for Safety Training in Coal

Mines with AI and Cloud Computing, Discrete Dynamics in Nature and Society, vol. 2020, ID 6243085,

7 pg.

Lin, T.-J., & Lan, Y.-J. (2015). Language learning in virtual reality environments: Past, present, and

future. Educational Technology and Society, 18(4), 486-497.

Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., and Peire, J. (2011). New technology trends in

education: Seven years of forecasts and convergence. Computers and Education, 57 (3), 1893-1906.

Michalak, D. (2012). Applying the augmented reality and RFID technologies in the maintenance of

mining machines. Lecture Notes in Engineering and Computer Science, 1, 256–260.

Microsoft Hololens, 2024. https://www.microsoft.com/tr-tr/hololens

Moore, P., 2021. Immersive Technologies boosts worksite VR platform new mine standards training

tool. International Mining. https://im-mining.com/2021/03/30/immersive-technologies-boosts-

worksite-vr-platform-new-mine-standards-training-tool/

Njamga, K. (2024). Gravel pit. Grabcad, https://grabcad.com/kelean.njamga-1.

Nickel, C., Knight, C., Langille, A., & Godwin, A. (2019). How Much Practice Is Required to Reduce

Performance Variability in a Virtual Reality Mining Simulator? Safety(5(2)), 18.

Oculus Quest 3 Metaverse, 2024. https://www.meta.com/quest/quest-

3https://www.meta.com/quest/quest-3/

Outcropwizard, Bonn, Germany (2022). Grube Theresia, Morshausen, Germany. Retrieved from

https://sketchfab.com/3d-models/ppc-kgale-2016-09-08-677a883d45ea48fbb974a0470f98a2ed

Özalp, R., 2024. Blender ile Açık Ocak Tasarımı, Proje Çalışması. GSF, DPÜ.

Patrimoine, L. D., (2024). Coal Mine Gallery, Sketchfab. https://sketchfab.com/3d-models/coal-mine-

gallery-2cc9dfc11fe243039f9900f0c31414ae

Pine, J. 2018. 10 Real Use Cases for Augmented Reality AR is set to have a big impact on major

industries. https://www.inc.com/james-paine/10-real-use-cases-for-augmented-reality.html

Premier Mapping, Cullinan, South Africa, (2024). PPC KGale Quarry, Botswana, Retrieved from

https://sketchfab.com/3d-models/ppc-kgale-2016-09-08-677a883d45ea48fbb974a0470f98a2ed

Premier Mapping, Cullinan, South Africa, (2024). Lyttleton Quarry, New Zealand. Retrieved from

https://sketchfab.com/3d-models/2016-09-01-lyttelton-05612c2bc3844d249b905a21f05aa594

Rice, R. (2009). The augmented reality hype cycle. http://www.sprxmobile.com/the-augmented-

reality-hype-cycle /2014.

Rigmodels, (2024). https://rigmodels.com

Ritz, L. T., & Buss, A. R. (2016). A Framework for Aligning Instructional Design Strategies with

Affordances of CAVE Immersive Virtual Reality Systems. TechTrends, 60(6), 549-556.

https://doi.org/10.1007/s11528-016-0085-9.

Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer
simulations in science education. Computers & Education, 58(1), 136–153.

https://www.microsoft.com/tr-tr/hololens
https://www.meta.com/quest/quest-3https:/www.meta.com/quest/quest-3/
https://www.meta.com/quest/quest-3https:/www.meta.com/quest/quest-3/
https://sketchfab.com/3d-models/ppc-kgale-2016-09-08-677a883d45ea48fbb974a0470f98a2ed
https://sketchfab.com/3d-models/coal-mine-gallery-2cc9dfc11fe243039f9900f0c31414ae
https://sketchfab.com/3d-models/coal-mine-gallery-2cc9dfc11fe243039f9900f0c31414ae
https://sketchfab.com/3d-models/2016-09-01-lyttelton-05612c2bc3844d249b905a21f05aa594
http://www.sprxmobile.com/the-augmented-reality-hype-cycle%20/2014
http://www.sprxmobile.com/the-augmented-reality-hype-cycle%20/2014
https://rigmodels.com/
https://doi.org/10.1007/s11528-016-0085-9

338

Samsung Gear VR, 2024. https://www.samsung.com/tr/support/model/SM-R322NZWATUR/

Sanlab, 2024. https://sanlab.net/simulator-systems/vr-heavy-equipment-simulator/

Sap, 2024. https://www.sap.com/mena/products/scm/industry-4-0/what-is-augmented-reality.html

Sarkar A. S., (2024), Flotation Machine, Grabcad. https://grabcad.com/library/flotation-machine-1

Sawyer, B. 2002. Serious games: Improving public policy through game-based learning and
simulation. USA: Woodrow Wilson International Center for Scholars.

Scales, M., 2019. VIRTUAL REALITY: MacLean offers VR training for bolter operators.Canadian Mining

Journal (CIM). May 9. https://www.canadianminingjournal.com/news/virtual-reality-maclean-offers-

vr-training-for-bolter-operators/

Shih, Y.-C. (2015). A virtual walk through London: culture learning through a cultural immersion

experience. Computer Assisted Language Learning, 28(5), 407–428.

Siewiorek, A., Gegenfurtner, A., Lainema, T., Saarinen, E., & Lehtinen, E. (2013). The effects of
computer-simulation game training on participants’ opinions on leadership styles. British Journal of
Educational Technology, 44(6), 1012–1035.

Sketchfab Inc. (2024). https://sketchfab.com

Smallman, H. S., and St John, M. (2005). Naive realism: misplaced faith in realistic displays. Ergon.

Design Q. Hum. Fact. Appl. 13, 6–13. DOI: 10.1177/106480460501300303

Sony Morpheus, 2024. Playstation VR. https://www.playstation.com/en-us/ps-vr/

SPH Engineering, Riga, Latvia (2022). Retrieved from https://www.ugcs.com/news-entry/announcing-

release-of-ugcs-update-with-added-search-patterns-for-sar-operations

Squelch, A. (2001). Virtual reality for mine safety training in South Africa. Journal of the Southern

African Institute of Mining and Metallurgy, 209-216.

Stothard, P.M., Squelch, A.P., Van Wyk, E.A., Schofield, D., Fowle, K., Caris, C., Kizil, M., & Schmid, M.

(2008). Taxonomy of Interactive Computer-based Visualisation Systems and Content for the Mining

Industry - Part 1. Proceedings of the AUSIMM Future Mining Conference 2008, Sydney.

Şimşek, İ. ve Can, T., 2019. Yüksek Öğretimde Sanal Gerçeklik Kullanımı ile İlgili Yapılan Araştırmalara

Yönelik İçerik Analizi, Folklor/edebiyat, cilt:25, sayı: 97-1, 2019/1.

Tan, B., Zhu, H., Wang, N., Jiang, Y., & Jia, G. (2012). Application of virtual reality in fire teaching of

mining. ICCSE 2012 - Proceedings of 2012 7th International Conference on Computer Science and

Education, Iccse, 1079–1081. https://doi.org/10.1109/ICCSE.2012.6295250

Tichon, J. ve Burgess-Limerick, B., 2021. A review of virtual reality as a medium for safety related
training in the minerals industry, Journal of Health & Safety Research & Practice, vol. 1, no. 3, pp. 33–
40.

Tiwari, S. R., Nafees, L., & Krishnan, O. (2014). Simulation as a pedagogical tool: Measurement of
impact on perceived effective learning. The International Journal of Management Education, 12(3),
260–270.

https://sanlab.net/simulator-systems/vr-heavy-equipment-simulator/
https://www.sap.com/mena/products/scm/industry-4-0/what-is-augmented-reality.html
https://sketchfab.com/
https://www.playstation.com/en-us/ps-vr/

339

Toraño, J., Diego, I., Menéndez, M., & Gent, M. (2008). A finite element method (FEM) - Fuzzy logic
(Soft Computing) - virtual reality model approach in a coalface longwall mining simulation. Automation
in Construction, 17(4), 413–424. https://doi.org/10.1016/j.autcon.2007.07.001

Unity 3D (2024). Unity Technologies Inc. https://unity.com

Unreal Engine (2022). Epic Games Inc. https://www.unrealengine.com/en-US/

Valsev, (2024). Realistic Underground Cave, Sketchfab, https://sketchfab.com/3d-models/realistic-

underground-basecave-40-46466ec0558945e9aac9dad15aaeb9f3

Van Krevelen, D.W.F. & Poelman, R. (2010). A Survey of Augmented Reality Technologies,

Applications and Limitations. The International Journal of Virtual Reality, 9(2):1-20.

Vangorp, P., Laurijssen, J., and Dutré, P. (2007). The influence of shape on the perception of material

reflectance. ACM Trans. Graphics 26:77. DOI: 10.1145/1239451.1239528

Vuforia, PTC Inc., (2024). https://www.ptc.com/en/products/vuforia

Wang, D., He, L., & Dou, K. (2013). StoryCube: supporting children’s storytelling with a tangible tool.

The Journal of Supercomputing. DOI: 10.1007/s11227-012-0855.

Wang, X., Kim, M.J., Love, P.E.D., and Kang, S.C. (2013). Augmented Reality in built environment:

Classification and implications for future research. Automation in Construction, 32, 1–13.

Warehouse, (2024). https://3dwarehouse.sketchup.com

Wikipedia, 2024a. https://tr.wikipedia.org/wiki/Stereoskop

Wikipedia, 2024b. https://en.wikipedia.org/wiki/Google_Cardboard#/media/File:Google-

Cardboard.jpg.

Wojciechowski, R., Walczak, K., White, M., & Cellary, W. (2004). Building virtual and augmented

reality museum exhibitions. Proceedings of 9th international conference on 3D web technology

(Web3D 2004), 135-144.

Xie, J., Li, S., & Wang, X. (2022). A digital smart product service system and a case study of the mining

industry: MSPSS. Advanced Engineering Informatics, 53(216), 101694.

https://doi.org/10.1016/j.aei.2022.101694

Xie, J., Liu, S., & Wang, X. (2022). Framework for a closed-loop cooperative human Cyber-Physical

System for the mining industry driven by VR and AR: MHCPS. Computers and Industrial Engineering,

168(February), 108050. https://doi.org/10.1016/j.cie.2022.108050

Yılmaz, M.R., Göktaş, Y. (2018). Using Augmented Reality Technology in Education. Journal of Çukurova

University Education Faculty, 47(2), 510-537.

Yin, C., Song, Y., Tabata, Y., Ogata, H., & Hwang, G. J. (2013). Developing and implementing a
framework of participatory simulation for mobile learning using scaffolding. Educational Technology
& Society, 16(2), 137–150.

Zhang, H. (2017). Head-mounted display-based intuitive virtual reality training system for the mining

industry. International Journal of Mining Science and Technology, 27(4), 717–722.

https://doi.org/10.1016/j.ijmst.2017.05.005

https://unity.com/
https://www.unrealengine.com/en-US/
https://sketchfab.com/3d-models/realistic-underground-basecave-40-46466ec0558945e9aac9dad15aaeb9f3
https://sketchfab.com/3d-models/realistic-underground-basecave-40-46466ec0558945e9aac9dad15aaeb9f3
https://www.ptc.com/en/products/vuforia
https://3dwarehouse.sketchup.com/
https://tr.wikipedia.org/wiki/Stereoskop
https://en.wikipedia.org/wiki/Google_Cardboard#/media/File:Google-Cardboard.jpg
https://en.wikipedia.org/wiki/Google_Cardboard#/media/File:Google-Cardboard.jpg
https://doi.org/10.1016/j.aei.2022.101694
https://doi.org/10.1016/j.cie.2022.108050

340

Zhang, X., Wang, A., & Li, J. (2011). Design and application of virtual reality system in fully mechanized

mining face. Procedia Engineering, 26, 2165–2172. https://doi.org/10.1016/j.proeng.2011.11.2421

Zhou, Z., Cheok, A.D., Pan, J., & Li, Y. (2004). Magic story cube: An interactive tangible interface for
storytelling. Proceedings of the 2004 ACM SIGCHI International Conference on Advances in computer
entertainment technology, 364-365. DOI: 10.1145/1067343.1067404.

https://doi.org/10.1016/j.proeng.2011.11.2421

341

AFTERWORD

We have entered a big world with this book, which has a tutorial-based design for beginners of Unity.

After combination of the knowledge of computer graphics, animation, C# codes, it is possible to

deploy Unity projects to computers, mobile devices, consoles, VR headsets and AR smart glass

platforms.

Being an expert in this huge volume of work and interdisciplinary work with field experts enables us

to obtain satisfactory and efficient results. However, it is also possible to get results without the

opportunity to work together with Unity experts with knowledge at a level that can meet the needs.

"Introduction to Unity, a Real-Time Development Engine with applications for mining" serves to

this idea.

Unity information will be further deepened with mathematical computations, numerical analysis,

optimization, statistics, VR headsets such as Meta Oculus, HTC Vive and AR smart glasses such as MS

Hololens 2, Apple Pro Vision. In addition, multi-user applications, integration of artificial intelligence

programs, and its use with IoT Internet of Things are included in the Unity's future perspective.

If you've gotten this far, thank you. Good luck and wish you success.

