[image: Screen%20Shot%202017-08-30%20at%202.29.42%20PM.png]
Lab – Analyze Automation Code
Lab – Analyze Automation Code
Objectives
In this lab, you will complete the following objectives:
Part 1: Write a Bash Script to Automate an Nmap Scan and Store the Results.
Part 2: Differentiate between Scripts Written in Bash, Python, Ruby, and PowerShell.
Background / Scenario
Penetration testing often requires repetitive tasks that use various tools to perform reconnaissance and analyze and exploit vulnerable systems. Creating scripts to automate these tasks reduces the time necessary to complete a penetration testing project.
Required Resources
Kali VM customized for the Ethical Hacker course
Instructions
Write a Bash Script to Automate an Nmap Scan and Store the Results.
Create a basic Bash script.
The Bash shell has a built-in script interpreter. Bash scripts can be written in any text editor and require minimal programming experience. The scripts can then be run from the Bash shell prompt. The syntax and structure of Bash scripts is similar to what you would type at the command prompt if you were doing the task manually. In this step, you will write a short script named recon.sh to perform a simple Nmap scan.
To begin your first script, log in to Kali, with the username kali and password kali. Open a terminal window and ping the target host at 10.6.6.23 to ensure that it is available on the network.
┌──(kali㉿Kali)-[~]
└─$ ping -c5 10.6.6.23
PING 10.6.6.23 (10.6.6.23) 56(84) bytes of data.
64 bytes from 10.6.6.23: icmp_seq=1 ttl=64 time=0.229 ms
64 bytes from 10.6.6.23: icmp_seq=2 ttl=64 time=0.048 ms
64 bytes from 10.6.6.23: icmp_seq=3 ttl=64 time=0.060 ms
64 bytes from 10.6.6.23: icmp_seq=4 ttl=64 time=0.054 ms
64 bytes from 10.6.6.23: icmp_seq=5 ttl=64 time=0.038 ms

--- 10.6.6.23 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 5451ms
rtt min/avg/max/mdev = 0.038/0.085/0.229/0.071 ms
Open the Mousepad text editor from the Applications menu. (Any text editor can be used to create the file.) The first line in the Bash script is a special kind of comment line that indicates the location of the interpreter to be used to run the code. This line is called a "shebang" and is common to most Linux scripts. Enter the shebang #!/bin/bash on line 1. This identifies the language of the script to the command interpreter.
Line numbers are added automatically in Mousepad, do not type them. They should not appear in the script itself.
1 #!/bin/bash
In this script, the user will enter the IP address of the target as a command line option. If no option is entered, the user will receive an error message showing the proper command syntax. Enter the if/then sequence as shown.
2 # Check if IP of target is entered
3 if [-z "$1"]
4 then
5 echo "Correct usage is ./recon.sh <IP>"
6 exit 1
7 else
8 echo "Target IP $1"
9 fi
Analyzing script code is an important skill for a penetration tester. Not only will you write automation code, you will often need to determine what an existing script does. The meaning of each line is as follows:
Line 2 is a comment line that begins with a hash tag #. Lines starting with # are used to document the script. Comment lines are ignored by the command interpreter.
Line 3 starts a test to determine if the input option variable $1 exists. By default, Bash scripts accept command line options into variables numbered by their position in the command. The -z returns "true" if the value of $1 is null. Bash requires a space after the first bracket [and a space before the last bracket].
Line 4 indicates what to do if the option variable does not exist (is null). Lines 5 and 6 are indented to indicate that they are part of the then clause.
Line 5 prints a message to the screen. Bash uses the echo command to print what is in the double quotes to the screen.
Line 6 will cause the script execution to stop and exit to the CLI if the condition is met.
Line 7 indicates what to do if the if condition is false.
Line 8 prints a message with the input value that was supplied and stored in the $1 variable. Note that further work is required to validate that the input was actually a valid IP address. This is beyond the scope of this lab.
Line 9 indicates that the if/then clauses are complete.
Save your file with the name recon.sh. In this example, the file is saved in the /home/kali directory.
To make a text file into an executable, it is necessary to change the Linux permissions on the file. Open a terminal window on the Kali desktop. List the directory using ls and verify that your script file is there and has the correct name. Enter the chmod +x command to add the executable permission to your file.
┌──(kali㉿Kali)-[~]
└─$ chmod +x recon.sh
Test your script by running it first with the IP address of the target (10.6.6.23) specified.
┌──(kali㉿Kali)-[~]
└─$./recon.sh 10.6.6.23
Target IP 10.6.6.23
Further test your script by running it as follows:
with no input supplied after the script name
with other text or an invalid IP address supplied after the script name. Note that if you are entering non-numeric text, it must be surrounded by quotation marks.
Question
The purpose of the script is to automate Nmap scanning using the target IP address value that is supplied to the script. What do you think will happen if the value is not a legal IP address?
Type your answers here.
Now edit the script file to enter the commands that will run the Nmap scan. Use the variable $1 to indicate the IP address of the target device you want to scan. The results of the Nmap scan will be written to a file named scan_results.txt. in the current directory.
8 echo "Running Nmap…"
9 # Run Nmap scan on target and save results to file
10 nmap -sV $1 > scan_results.txt
11 echo "Scan complete – results written to scan_results.txt"
Question
What type of Nmap scan will be run with this script?
<Type your answer here>
Save the script. Below is the recon.sh script so far.
#!/bin/bash
Check if IP of target is entered
if [-z "$1"]
 then
 echo "Correct usage is ./recon.sh <IP>"
 exit
 else
 echo "Target IP $1"
 echo "Running Nmap…"
Run Nmap scan on target and save results to file
 nmap -sV $1 > scan_results.txt
 echo "Scan complete – results written to scan_results.txt"
fi
Run it again with the target IP address supplied.
┌──(kali㉿kali)-[~]
└─$./recon.sh 10.6.6.23
Target IP 10.6.6.23
Running Nmap....
Scan complete -- results written to scan_results.txt
Use the cat command to view the contents of the scan_results.txt file that you created with the script.
Question
What ports are open on the target?
Type your answers here.
Modify the script to enumerate shares on the target.
As seen in the previous step, the target at 10.6.6.23 has open ports that could indicate that a Samba server. is running on the target. In this step, you will edit your script to run enum4linux if a Samba drive share port is open to determine any available drive shares or user accounts.
Question
What indicates that a Samba server is running on the hosts?
Type your answers here.
Open the recon.sh file in the text editor. Add the following commands.
13 # If the Samba port 445 is found and open, run enum4linux.
14 if grep 445 scan_results.txt | grep -iq open
15 then
16 enum4linux -U -S $1 >> scan_results.txt
17 echo "Samba found. Enumeration complete."
18 echo "Results added to scan_results.txt."
19 echo "To view the results, cat the file."
20 else
21 echo "Open SMB share ports not found."
22 fi
Analyze the additional code.
Line 13 is a comment.
Line 14 indicates the start of an if/then statement that will search in the Nmap results for open port 445. The grep command searches lines in the file that match the pattern “445 open.” The grep command searches for lines that match the pattern “445” first. Then the output is piped into a second grep command to search again for lines that match the pattern open. With the option -i, the grep command ignores the case distinctions in the search patterns. The option -q suppresses standard outputs.
Line 15 is the "then" clause. This contains the command that will be executed should the if test return "true".
Lines 16 - 19 are executed if the SMB file sharing port (445) is found. Line 16 runs enum4linux with the -U and -S options on the target host specified in $1 and appends the results to the end of the scan_results.txt file. Lines 17, 18 and 19 display messages when emun4linux has finished the scan and provides directions to view the results.
Line 20 indicates the action to take if the logical if the condition fails.
Line 21 displays a message if the SMB file sharing port (445) is not open.
Line 22 the fi signifies the end of the if/then clause.
Question
What do the -U and -S options do in enum4linux?
<Type your answer here>
Save the recon.sh file in the text editor and exit to the command prompt. Below is the complete recon.sh script.
#!/bin/bash
Check if IP of target is entered
if [-z "$1"]
 then
 echo "Correct usage is ./recon.sh <IP>"
 exit
 else
 echo "Target IP $1"
 echo "Running Nmap…"
Run Nmap scan on target and save results to file
 nmap -sV $1 > scan_results.txt
 echo "Scan complete – results written to scan_results.txt"
fi
[bookmark: _Hlk140055678]# If the Samba port 445 is found and open, run enum4linux.
if grep 445 scan_results.txt | grep -iq open
 then
 enum4linux -U -S $1 >> scan_results.txt
 echo "Samba found. Enumeration complete."
 echo "Results added to scan_results.txt."
 echo "To view the results, cat the file."
 else
 echo "Open SMB share ports not found."
fi
Run the script again on the target system (10.6.6.23).
┌──(kali㉿kali)-[~]
└─$./recon.sh 10.6.6.23
Target IP 10.6.6.23
Scan complete -- results written to scan_results.txt
Samba found. Enumeration complete.
Results added to scan_results.txt.
To view the results, cat the file.
Use the cat command to view the results contained in the scan_results.txt file.
Question
What file shares were found on the target?
 <Type your answer here>
Automate Nmap from the command line.
Another way to automate Nmap is to scan a group of specific targets that are specified in an external file.
Create a new file in Mousepad and type in the IP addresses of the existing hosts on the 10.6.6.0/24 network. To discover all the available hosts with their IP addresses, enter the command containers in the terminal.
Be sure the IP addresses are separated with a space or list each IP address on a separate line.
Save the file with the name to_scan.txt.
At the prompt, enter the command to run Nmap with the targets from the file. For the purposes of this lab, will just run a simple ping scan, but any type of scan that takes an IP address as a target can be run in this way.
┌──(kali㉿Kali)-[~]
└─$ nmap -sn -iL to_scan.txt
After a brief delay, you should see Nmap output the scan reports for each host that was specified in the to_scan.txt file.
Note: The to_scan.txt file does not require executable permissions because it is serving as a data file, not as a script file.
Differentiate between Scripts Written in Bash, Python, Ruby, and PowerShell
In this part, you will use what you learned in the previous part about writing and analyzing a Bash script to analyze pre-written scripts. Knowing what scripting language is being used in scripts that you encounter while penetration testing enables you to understand the purpose of the script, and potentially enables you to modify it to obtain additional information.
This chart illustrates some of the different syntax characteristics of various scripting languages.
	Function
	Python
	Bash
	Ruby
	PowerShell

	Shebang Example – special comment line at the top of script that identifies the path to the interpreter
	#!/usr/bin/python3
	#!/bin/bash
	#!/usr/local/bin/ruby
	#!/usr/bin/env pwsh

Only needed if running PS in Linux, not required in Windows

	Loading Modules
	import libraryName as alias
from libraryName import subModule
	n/a; Bash does not require loading modules
	Require ‘libraryName’

Self contained libraries are called ‘gems’
	n/a; PowerShell does not normally require loading modules

	Defining Variables
	variableName = variableValue
	variableName = variableValue

Variables read in as options from CLI are assigned $1, $2, …, $n
	variableName = variableValue

Cannot begin with a number or capital letter
	$variableName = variableValue

	Calling Variables
	variableName
Example:
print(variableName)
	$variableName
Example:
echo $variableName
	#variableName
Example:
puts #variableName
	$variableName
Example:
PS C:\> $variableName

	Comparison
	Uses Arithmetic symbols:
Equal to ==
Not Equal to !=
Greater than >
Greater than or equal to >=
Less than <
Less than or equal to <=
	Uses alpha:
Equal to -eq
Not equal to -ne
Greater than -gt
Greater than or equal to -ge
Less than -lt
Less than or equal to -le
Example: $x -gt 8

If using arithmetic symbols, enclose in double parenthesis.
(($a > $b))
	Uses Arithmetic symbols:
Equal to ==
Not Equal to !=
Greater than is >
Greater than or equal to >=
Less than <
Less than or equal to <=

	Uses a variety of operators:
Equal to:
-eq, -ieq, -ceq
Not equal to:
-ne, -ine, -cne
Greater than:
-gt, -igt, -cgt
Greater than or equal to:
-ge, -ige, -cge
Less than:
-lt, -ilt, -clt
Less than or equal to:
-le, -ile, -cle

	If Conditions
	if condition1:
 action1
elif condition2:
 action2
else:
 action3
	if [condition1]
 then action1
elif [condition2]
 then action2
else
 action3
fi
	if condition1
 action1
elsif condition2
 action2
else
 action3
end

unless can be used if just checking If a condition is "not true"
	if (condition1) {
 action1
}
elseif (condition2) {
 action2
else {
 action3
}

	Do while loops
	Example:
i=1
while i < 6:
 print(i)
 i = i + 1
print ("All done")
	Example:
x=1
while [$x -le 5]
do
 echo "count " $x
 x=$(($x + 1))
done
	Example:
x = 5
while x >= 1
 puts x
 x = x - 1
end
	Example:
$x=5
do {
 Write-Host $x
 --$x
} while ($x -ge 1)

[bookmark: _Hlk138406217]Review the code sample shown. Use the syntax characteristics to determine which scripting language is used to interpret the code.
1 import nmap
2 # take the range of ports to
3 # be scanned
4 begin = 21
5 end = 80
6 target = '10.6.6.23'
7 # scan the port range
8 for i in range(begin,end+1):
9 results = nmap.PortScanner(target,str(i))
10 results = results['scan'][target]['tcp'][i]['state']
11 print('Port {i} is {results}.')
Question
Using the information from the chart, what shebang should be the first line of code?
<Type your answer here>
Question
What port range will be scanned?
<Type your answer here>
[bookmark: _Hlk138408770]Review the code sample shown. Use the syntax characteristics to determine which scripting language is used to interpret the code.
1 require 'nmap/command'
2 Nmap::Command.sudo do |nmap|
3 nmap.syn_scan = true
4 nmap.os_fingerprint = true
5 nmap.service_scan = true
6 nmap.output_xml = 'scan.xml'
7 nmap.verbose = true
8 nmap.ports = [20, 21, 22, 23, 25, 80, 110, 443, 512, 522, 8080, 1080]
9 nmap.targets = '10.6.6.*'
10 end
11 #Parse Nmap XML scan files:
12 require 'nmap/xml'
13 Nmap::XML.open('scan.xml') do |xml|
14 xml.each_host do |host|
15 puts "[#{host.ip}]"
16 host.each_port do |port|
17 puts " #{port.number}/#{port.protocol}\t#{port.state}\t#{port.service}"
18 end
19 end
20 end
[bookmark: _Hlk138411096]Questions
Using the information from the chart, what scripting language interpreter will be used to run this code?
<Type your answer here>
What is the target of this Nmap scan?
<Type your answer here>
Review the code sample shown. Use the syntax characteristics to determine which scripting language is used to interpret the code.
1 $nmapExe = "\Program Files (x86)\Nmap\nmap.exe"
2 #define nmap targets
3 $target = "10.6.6.0/24", "172.17.0.0/29"
4 #run nmap scan for each target
5 foreach ($target in $target)
6 {
7 $filename = "nmap_results"
8 $nmapfile = ".\temp\" + $filename + $target +".xml"
9 cmd.exe /c "$nmapExe -p 20-25,80,443,3389,8080 -oX $nmapfile -A -v $target"
10 }
[bookmark: _Hlk138411802]Question
Using the information from the chart, what scripting language interpreter will be used to run this code?
<Type your answer here>
What options will Nmap use for the scan and what do those options mean?
<Type your answer here>
Reflection Question
Code analysis skills are tested on penetration testing certifications. What benefit does having code analysis skills provide to penetration testers?
<Type your answer here>
End of document
ã 2023 - 2023 Cisco and/or its affiliates. All rights reserved. Cisco Public	Page 1 of 6	
ã 2023 - 2023 Cisco and/or its affiliates. All rights reserved. Cisco Public	Page 6 of 6	
image1.png
ol Networking
cisco. Academy

