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Determination of generalized vibration table forces
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The article determines the generalized forces of the technological set of equipment for concrete products production (vibrating
table), in which the vibration exciter is fixed on the lever vertically in the center under the vibrating plate. This equipment is
used for the manufacture of small-sized concrete products. Methods of mathematical physics and physical and mathematical
modeling by methods of applied mechanics were used in the research. To determine the position and describe the free motions
of the material bodies that make up the mechanical system under consideration, an orthogonal vibrational reference system of
three coordinate systems was used. As a result, seven generalized forces acting on this mechanical system were determined.
The obtained dependencies for the generalized forces will be used to compose a mathematical model of the above-mentioned
equipment using the Lagrange equations of the second kind

Key words: vibrating table, lever, vibrator, unbalance, generalized force, mechanical system
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B cTaTTi NpOBOANTHCS BU3HAYECHHS y3aralbHEHNX CHJI TEXHOJIOTIYHOTO KOMIUIEKTY 00JIaJHaHHS JUIsl BAPOOHHIITBAa OCTOHHUX
BHPOOIB (BiOpOCTOINY), y sIKOro BiOpO30YMKyBau 3aKpiILIIOETHCS Ha BaXKeNi BEPTHKAIBHO MO LEHTPY Mil BiOPOILIUTORO.
[ane o0agHaHHS BUKOPHCTOBYETHCS JUIsl BATOTOBJICHHS MajorabapuTHUX OeTOHHHMX BHPOOiB. [Ipy BUKOHAHHI TOCHTiIKEHb
OyJI BUKOPUCTAHHI METOIM MaTeMaTH4HOI (i3KKH Ta (i3UKO-MaTeMaTHYHE MOJICTIOBaHHS METOIaMH MPUKIIAJIHOT MEXaHiKH.
[ BU3HAYCHHS NOJI0KEHHS 1 ONIMCY BUTBHUX PYXiB MaTepiaJIbHUX T1JI, 3 SIKUX CKIIAAA€ThCS PO3IIIsIyBaHA MEXaHIYHA CHCTEMA,
OyIa 3aCTOCOBaHa OPTOTOHAIbHA BiOpaliiiHa cicTeMa BiIUTIKY 3 TPhOX CHCTEM KOOPAMHAT. AHATI3YIOUH KiIHEMAaTHYHY CXEMY
BiOpaIiifHOro cTOIy, BU3HAYCHO, IO MOJIOKEHHS B IPOCTOPI YCIX MaTepialibHUX TiJl MEXaHIYHOI CHCTEMH, KA MOJEIIOE 3a-
3Ha4YeHHMil BIOPOCTII, MOXKHA OJTHO3HAYHO 3a/[aTH TAKUMHU HE3aJIC)KHUMHU MapaMeTpaMu: JeKapTOBUMH KOOpIHHATAMH, BiOpa-
[IHIMH KyTaMH Ta KyTOM HOBOPOTY JebanaHcy. TakuM YMHOM, pO3IJIsIyBaHa MEXaHidYHa CHCTEMa Ma€ CiM CTyIIeHiB BiJlb-
HOCTI 3 ciMOMa y3arajJbHeHHMH KoopauHaTtaMmu. OCKUTBKY KOXKHIH y3araabHeHIH KOOpAMHATI BiINOBia€ y3arajlbHEeHa CHIIa,
TO X YHCIIO IOPIBHIOE YHCITY y3araJlbHEHUX KOOPAMHAT CUCTEMH, Yepe3 110 PO3IJIsilyBaHa MEXaHIYHa CHCTEMa Mae CiM y3ara-
JbHEHHX cuil. bepyun 110 yBary, 110 Ha JaHy MEeXaHi4Hy CHCTEMY JAiI0Th 30BHILIHI CHIIN y BUTJIAAI CUITH TSDKIHHS, CHIIM TTPYXK-
HOCTI YOTHPHOX BIOPOOMOp Ta MEXaHIYHOTO KPYTHOI'O MOMEHTY HPHBOIHOTO ABUTYHA, Oy BH3HAUEHI CIM y3araJbHEHHX
CHJI,IIFOYMX Ha JaHy MeXaHidHy cucteMy. OTpUMaHi 3aJIeKHOCTI [UIs y3aralbHEHUX CHJI Oy IyTh BUKOPHCTaHI AJIS CKIIaJaHHs
B TIOJAJIBIIOMY MaTeMaTH4YHOT MOJIETi BHILE3TaJaHOTo 00IaIHaHH 32 OTIOMOTOI0 PiBHSHB JlarpaHika Ipyroro poay

KurouoBi ci1oBa: BiOpocrTiy, Baxisb, BiOpaTop, nebdanaHc, y3araabHeHa CHIla, MeXaHidyHa cHcTeMa
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Introduction.

Vibration is the most common method of compaction
of concrete composites [1,2]. More than 90% of all con-
crete and reinforced concrete building products are made
using this method of concrete mix compaction [3]. This
is due to the fact that in the process of vibration action on
concrete mixtures, favorable conditions are created for
thixotropic dilution and the most compact placement of
aggregate particles [4,5].

Modern development of construction requires the in-
troduction of the latest technologies and the installation
of engineering equipment for various purposes accord-
ing to the criteria of minimizing energy and high effi-
ciency of the technological process. There is a huge va-
riety of vibration machines used in construction, which
differ in design and purpose. And, first of all, great atten-
tion should be paid to the development and implementa-
tion of energy-saving technologies and equipment.

A review of various designs of vibration equipment
shows that in the production of a wide range of concrete
products, equipment with the necessary operating pa-
rameters is used, with the help of which high-quality
vibration compaction of the concrete mixture is
achieved. In order to find out the individual parameters
influence of the technological set of equipment for con-
crete products production developed by us [6] on the
movement of its working body and energy consump-
tion, it is necessary to make a mathematical model of
this mechanical system.

Review of the research sources and publications.

In modern production, vibration machines with har-
monic (circular oscillations in the vertical plane, verti-
cally and horizontally directional oscillations, spatial os-
cillations) and with shock-vibration (on elastic pads,
dual-mass with horizontal or vertical directional oscilla-
tions) movements of the working body are used to form
concrete products. Such technologies for forming con-
crete products as vibration compression, vibration vac-
uum and pulse compaction method are increasingly be-
ing developed and implemented [7].

The widespread use of vibration technology, numer-
ous theoretical and experimental studies of the dynamics
of vibration machines have made it possible to identify
the features of their operation, to explain and apply in
practice the peculiar effects that occur during the action
of vibration on mechanical systems [8,9,10]. Therefore,
a lot of research and development is devoted to this issue
[11,12], which reveals such advantages of vibration
equipment as high compaction efficiency, simplicity of
design, high reliability and relatively low metal and en-
ergy consumption.

One of the priority areas for the development of con-
struction vibration equipment is to reduce energy costs
in production. Energy-saving technologies, along with
increasing productivity and improving product quality,
are at the forefront of modern construction. The direction
of energy saving is developing due to the optimization of
technological parameters of equipment and the use of
modern technologies.

Definition of unsolved aspects of the problem.

In our case, it is necessary to create a vibrating table,
which, by placing a vibrating exciter on a vertical lever
under the vibrating plate, would save energy costs in the
manufacture of concrete products by reducing the power
of the vibrator while maintaining the required vibration
compaction parameters.

Problem statement.

The purpose of this work is to determine the general-
ized forces of a mechanical system that simulates a vi-
brating table with a vibrating exciter placed on a verti-
cal lever under a vibrating plate. The data of the depend-
ence of generalized forces are necessary for the analysis of
technological factors, in particular the length of the lever,
which have an impact on the energy intensity of this me-
chanical system, as well as for the subsequent compilation
of a mathematical model of the technological set of equip-
ment for the production of concrete products (vibrating ta-
ble) using the Lagrange equations of the second kind.

This work is an integral part and continuation of the
results obtained in the work [13].

Basic material and results.

The general view of the technological set of equip-
ment for the production of concrete products (vibrating
table) is shown in Fig. 1.

Fig. 1. General view of the technological set of
equipment for the manufacture of concrete prod-
ucts

Mathematical model of a vibrating table for the man-
ufacture of small-sized concrete products in the form

of Lagrange equations of the second kind [14]

i(a_T)_:_;:Qi (i=12..0...,5) (1)

dt \ag;

contains generalized forces Q4, Q,, ...,Q; , ..., Qs,
where Q; — the generalized force corresponding to the
generalized coordinate g;. In the system (1) of differ-
ential equations, the coordinates are generalized q; =
q1(0), 42 = q2(), ..., i = qi(0), ..., qs = q5(0) -
these are independent parameters that uniquely define
the position of a mechanical system in space, the num-
ber of which determines the number of s degrees of

this system freedom, agy = 22 = ¢,(t), g, = % =

dat



G2(0), s Gy = S = Gu(0), .., G = 2 = 4s(0) -
corresponding generalized velocities.

From the analysis of the kinematic scheme of the vi-
brating table [13], it is obvious that the position in
space of all material bodies of the mechanical system
that simulates the specified vibrating table can be
uniquely given by the following independent parame-
ters:

o Cartesian coordinates x. = x.(t), yc =

ye () iz = z.(t), which determine the position

of the center C inertia of plate 1 in a fixed coordi-

nate system Oxyz;
e vibrating angles @ = a(t), B =) iy =

Y (t), which define the position of plate 1 with re-

spect to the moving coordinate system Cx'y'z’;
e angle ¢ = ¢(t) unbalance rotation 5 around
the axis ¢ rotation of an unbalanced shaft 4 that
passes through a point C5 and coincides (coin-
cides) with the central longitudinal axis of the
housing 3 of the vibration exciter.
Thus, the mechanical system in question has s = 7
degrees of freedom, the generalized coordinates are
01 =X, 42 = Yc:i 43 = 2, 44 = A, G5 = B, s = P i

q, = ¢, and generalized speeds — g, = % = X,
. dyc . . dzc . . da N
G="r Ve B3=7 T2 4= ;=4 (s =
L=pge=L=4ig¢,=2=¢

For the sake of clarity and for further considerations,
let us imagine and depict in Figures 2 +~ 4 a mechani-
cal system in its three projections at an arbitrary mo-
ment in time T so that all the generalized coordinates
are positive, and assuming that at that moment each
generalized coordinate is increasing (of course, in this
case, all time derivatives of the generalized coordi-

nates will also be only positive).
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Fig. 2. Mechanical system in projection on the
frontal plane
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Fig. 3. Mechanical system in projection on the
profile plane

Fig. 4. Mechanical system in projection on the
horizontal plane

Since each generalized coordinate corresponds to a
generalized force, their number is equal to the number
of generalized coordinates of the system, which is
why the mechanical system in question has seven gen-
eralized forces. The significance of these forces di-
rectly depends on external forces Py, P,, ..., P, ..., B,
acting on certain points of the system.

To determine the generalized force, for example, Q;
corresponding generalized coordinate g; give an infin-
itesimal increment 6¢;, leaving the other generalized
coordinates unchanged. As a result, the infinitesimal
increases §q; all points of the mechanical system will
receive infinitesimal displacements §s,, ds,, ..., ds;,
..., 0s,, which are possible point movements. Next,
the sum of the elementary work of all external forces
on these possible displacements is calculated, which is
equal to

n
" (s -cos(B 55)] = o4,
J:
and believe that
8A; = Q; - bq;.
Value Q;, what is determined from this equation,

= %4
Ql_&h

O]



and is a generalized force that corresponds to a gen-
eralized coordinate g;, defined through possible work
5Al'

As is known [15], the elementary work of an arbi-
trary force 13] on a certain possible displacement in the
coordinate form of the notation, determines the de-
pendence

SA(P) =Py -6x+ Py, -8y + P, 6z, (3)
where Py, P;, i P;, —projections of this arbitrary
force 131 on the appropriate axes; 8x, 8y i §z — projec-
tions of possible displacement of the point of force ap-

plication 13] on the same axes.

Any resistance to the movements of the material
bodies of the mechanical system in question shall be
neglected. In this case, it is affected by the following
external forces:

a) gravity
Gi=my-g, G3=m3‘§_; Ge=mg G i Gs=
m-g

corresponding material bodies, which are attached in
points C, Cs, Cq i Cs (see Fig. 5);

6) elastic forces of the four elastic elements on
which the plate rests 1 (see Fig. 7);

B) mechanical torque (or rotational) M, Of an en-
gine (see Fig. 8, a).

Fig. 5. On the of gravitational forces elementary
works definition

As is known [16], according to Hooke's law, the lin-
ear elastic force F,,, that occurs in linear defor-
mation A £, proportional to said deformation

Ep =c-4¢,

where ¢ — proportionality coefficient, for an elastic
element — stiffness coefficient.

Due to the fact that during the direct formation of
concrete products, slab 1 is in free motion, the vertical
elastic elements on which it rests undergo not only lin-
ear deformations along the vertical axis Oz. To take
into account the stiffness of each elastic element in the
direction of the horizontal axes Ox and Oy let's intro-
duce virtual elastic elements with stiffnesses ¢, and cy
respectively (see Fig. 4). In this case, three orthogonal
elastic forces will act on plate 1 from each elastic ele-
ment

F;1p.x =Cy A4, Ejp.y = Cy'Alay i
E,,=c 4%, 4)

np.z

where 4 ¢,, A £, and A £ — deformations of the cor-
responding elastic elements.

Since for the working body of the vibrating table, its
angular displacements determine the vibration an-
gles a, g and 1, which acquire only small values,
then we neglect the torsional rigidity of each elastic el-
ement.

Consider in Figure 6 a mechanical system in its posi-
tion of static equilibrium (PSE), where £, — length
of each elastic element in the undeformed state.

Z,2,2;

undeformed
elastic element

Fig. 6. Mechanical system in static equilibrium
position

From the equilibrium condition },.Z = 0 getting the
corresponding equilibrium equation
—Mmy-g—mzg-g-—m-g—mg-g+c-fo+c:
fCT.+C'fCT.+C'fCT. =0,
from where
—M-g+cefor. =0, ©)
where M =m; + mg+mg+m, c,=c+c+c+
¢ = 4 - c—equivalent stiffness of elastic elements or
stiffness of equivalent elastic support [13], f;.— static
vertical deformation of equivalent elastic support (of
course, in the static equilibrium position of a mechani-
cal system, each of the elastic elements on which plate
1 rests has the same vertical static deformation, and all
the introduced virtual elastic elements are unde-
formed).
To find the generalized force Q; = Q.

1) will give to a generalized coordinate
qs = 2 infinitesimal linear increment §q; = 8z,
(see Fig. 1 and 2), and leaving other generalized
coordinates unchanged,;

2) will establish what possible dis-
placements were made by the points of applica-
tion of all external forces acting on the mechani-
cal system, as a result of the increase provided
8q3 = 6z¢;

3) will calculate the possible work §4;
of all external forces at the indicated possible dis-
placements of points.

Will look for a possible work § A5 according to the
formula

§As = 84;5(G) + 8A;5(Fyp), (6)



where §45(G) i 8A4;5(F,.) - Accordingly, the pos-
sible work of gravity forces and elastic forces of elas-
tic elements.

As the increasing §q; = 6z directed vertically, then
the possible works of the elastic forces of horizontally
arranged virtual elastic elements at such a possible
displacement are equal to zero and therefore

6A3(an.) = 6A3(E1p.z):

where 54 (F;, ,) — possible works of elastic forces
of real elastic elements.

For sure,

§45(G) = 845(Gy) + 645(Gs) + 645(Ge) +
§45(Gs),

where §45(G,), 845(Gs), 545(Gs) i 645(Gs) — ele-
mentary works of the corresponding gravitational
forces, which are determined by the formula (3).

Directly from Figure 4 we can see that the corre-
sponding projections of forces

Gix =0, G, =0, G, =-G =-my-g,
G3x =0, G;, =0,
G3, =—G3=—m3 g, Gexy=0, Gg, =0, Gg, =
—Gg=—mg - g,
Gsx =0, G5, =0, Gg;,=—Gs=—m-g
and projections of possible point displacements C,
C3, C¢ and Cs on the same axes
bx¢ = 8x¢, = 8x¢, = 8x¢, = 8yc = b8yc, =
5}’06 = 5)’65 =0,
6z¢, = 62¢, = 6z¢, = 62¢.

Then

5A3(G) =—-my-g-6zc—m3-g-6Zc—Mg- g
“6zc—m-g-6z; =

=—(m+mg+mg+m) -g-8z; =

=-M-g- 96z. @)

Now let's find in formula (6) the component
5A3(Fyp.) = 8A45(F,. ,) as the sum of the elementary
works of the real elastic elements elastic forces I, 11,
HI1V:

6A3(an.) =_) 6A3(an.zl) + §A3(an.zll) +
6A3(an.2111) + SAB(an.ZIV)l

where §A3(Fupz1) 8As(Fupzir ), A3 (Fup i) and
8A3(Fypv) determined by the formula (3), and the
elastic forces themselves by the formula (4).

Calculating for each of the elastic elements the ele-
mentary work of its elastic force at a specific displace-
ment of the point of its application, we will take into
account the fact that the specified work is positive
when the elastic force contributes to the reduction of
the deformation of the elastic support, and negative if
the elastic force increases the deformation of the elas-
tic support.

When finding deformations of elastic elements at the
considered moment of time t Let us take into account
the fact that the movement of their anchoring points to
plate 1 from its rotations to vibration angles «, 8 and
1 in reality, they are carried out along the arcs of the
corresponding circles, but because of the smallness of

these displacements, we neglect their curvature, as-
suming that the points move in straight lines along the
corresponding coordinate axes at a distance equal to
the lengths of the indicated arcs. Then, from the cumu-
lative analysis of Figures 6 and 7, we establish that
Ay =fo —2z2c+a-a—b-B, Ay =fo —2zc+
a-a+b-p,
—Zzc—a-a+b-B, Ay = fur —
Zc—a-a—b-p,
Because of what
an.zl =C'A€I =C'(fc‘r._ZC+a'a_b'ﬁ): \
Fppzu=c4¢y=c(foo. —2c+a-a+b-p),
Fopzmm =¢- 44y, =c (fo.—2c—a-a+b-p),
Fapzv=c A8y =c-(fo—2c—a-a-b-p).)
®)

Aty = for
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Fig. 7. On the Elastic Forces Elementary Works
Determination
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Since in Figure 7 all the elastic forces Fiy , 1, Fop 711,

Fupz i1 i Fop.2 v Vertically upwards, then, of course,
they are all projected on the axis 0z life-size with a
positive sign, and are not projected on other axes. It is
also evident that projections on the axis Oz possible
displacements of the points of attachment of elastic el-
ements to plate 1 are positive and are equal to the
given infinitesimal increment 6z., and the projections
on the other axes are zero.

Then, according to the formula (3)

SAS(ﬁnp.zI) = an.z] ' 6ZC =cC- (fc‘r —Zcta-a-—

b ' ﬁ) : 6ZC5
6A3(an.zll) = an.zII 6zc=c (fo.—2zcta-
a+b-B)- 6z,
5A3(an.z111) = Fupzun b6zc=c (fr. —2c—a-
a+b-B) 6z,

5A3(ﬁnp.zlv) =an.zIV'6ZC
=c (fo.—2c—a-a—b-p)
-6z¢
and
8A3(13np_) =c(fop. —2c+a-a—b-B)- 8z
+c(for. —2zc+a-a+b-B) 6z
+
+c - (for.—2zc—a-a+b-pB)-8z;+c
“(for.—2c—a-a—b-p)- 8z
or (after conversions)
843(Fp) =c- (o —2c+a-a=b-B+fuo -2
ta-a+b-p+



+foo—2c—a-a+b-f+fo—2c—a-a—b-p)
- 8zp =
=c- (4 for. =4 2c) 0zc =4 ¢ (for. — 2Z¢) -
6zc.
Since the same 4 - ¢ = ¢, then
8A3(Fyp) = Ce+ for - 62¢ — Co - 2 - Oz ©)
By substituting the values (7) and (9) into formula
(6), we have
6A3=—M-g-6zp—mg-g-8zc+ o for - 02
—Ce Zc 0zc =
= (—M'g—ms 'g+ce'fCT._Ce'ZC)'5ZC1
whence we get the equality (5)
8A; = —c. - z¢ - 62,
then, according to formula (2), the generalized force
corresponding to the generalized coordinate q; = z.,
64; O0A; —co.-z; 0z
©8q; Ozp 6z¢
and, after the reduction of &z, finally
Q3 = —Ce " Zc.

3

Computing the other generalized forces of our
mechanical system in the same way, we get
Q1= —Cex"Xc+Cex -0 .
Q= _Cey'yc_cey'a'ﬁ-

Q, =—(my+m)-gl-sina+mg-glg-sina—
—-m-ge-sina-cosg—c, a’-a
Q=—(my+m)-g-¢-sin B+
+m,-g-{,-sinB—c, -b*- B .

Qé=_cex'b2'lp_cey'a2'1/)-
Q;, =My —m-g-e-sing.

Conclusions

To obtain a mathematical model of the developed vibrat-
ing table design, we propose to use the Lagrange equation
of the second kind. This method is the most common
method used in solving problems concerning the motion
of mechanical systems.

The vibrating table in question was modeled by a me-
chanical system consisting of several material bodies - a
plate, a vibration exciter body, an imbalance and a con-
tainer with a concrete mixture. To determine the position
and describe the free motions of the above-mentioned ma-
terial bodies of the mechanical system under considera-
tion, an orthogonal vibrational reference system of three
coordinate systems was used.

Having depicted and considered the mechanical sys-
tem of the developed design of the vibrating table,
seven generalized forces acting on it were determined.

The defined generalized forces of this mechanical sys-
tem will be further used to compile a mathematical
model of the vibration table in the Lagrange equations
of the second kind, with the help of which it will be
possible to analyze the influence of its constituent pa-
rameters - geometric and kinematic - on the process of
compaction of the concrete mixture to reduce energy
consumption during vibration compaction of products.
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