Лабораторна робота №5

Виконання частотного та динамічного аналізу зварної конструкції

Відкриваємо збірку CNC_ROUTER і створюємо Нове дослідження – Частота (New Study – Frequency (Рис.1.1).

Asse	mbly	Layout	Sketch	Marku
1		。 隐 4	4	► (
		re v Study		2
~	× -	н		
Mess	age		^	
Study strain comp	stresse s and f onents	es, displace actor of sa with linear	ements, fety for material	
Name	2		^	
	Static	1		
Gene	ral Sim	ulation	^	
4	Statio	:		
		se 2D mplificatio	n	
	□ In F€	nport Study atures	/	
QŲ	Frequ	uency		

Рис.1.1. Створення нового дослідження

У зв'язку з не функціональністю болтових з'єднувачів елементи, які показані на Рис.1.2 треба вилучити з аналізу. Виділити всі елементи (ZDTU_Holder 1-10), натиснути права кнопка миші – Exclude from Analysis.

Рис.1.2. Вилучення елементів із аналізу

В дереві побудови є елемент **Traversa** (Рис.1.3), до якого будуть прикладатися навантаження при виконанні динамічного дослідження, то визначаємо цей об'єкт як балка. Права кнопка миші – **Treat all solid bodies as Solid.**

Рис.1.3. Елемент Traversa

Створюємо закріплення: правою кнопкою миші натиснути Fixtures – Fixed Geometry. Вибираємо Immovable (No translation) і визначаємо вузли, які хочемо зафіксувати (Рис.1.4).

Рис.1.4. Фіксування вузлів

Будуємо сітку. В дереві побудови шукаємо сітку (**Mesh**) – натискаємо правою кнопкою миші і вибираємо **Create Mesh**. Сітка побудована (Puc.1.5).

Рис.1.5. Результат побудови сітки

Наступний крок це налаштування модального аналізу. В Дереві побудови дослідження знайти **Частота1***, натиснути правою кнопкою і вибрати властивості

(**Properties**). В **Number of frequencies** задаємо кількість частот – 20, всі інші параметри за умовчанням (Рис.1.6).

O Number of frequer	icies	20		
Calculate frequ (Frequency Shif	encies closest to: t)	0	Hertz	
OUpper bound frequ	iency:	0	Hertz	
Decouple the mixed	d free body modes			
Frequency cap:	Automatic	\sim		
	0 Hei	rtz		
	ata ha iliana ana ada t			
Use inplane effect				
Use inplane effect	stabilize model			
Use inplane effect	IDWORKS document	folder		
Use inplane effect Use soft spring to Save Results Save results to SOL Results folder	IDWORKS document	folder ktop\11_21 (CNC Router_ZDTU) (
Use inplane effect Use soft spring to Save Results Save results to SOL Results folder Average stresses a	IDWORKS document C:\Users\Yana\Des t mid-nodes (high-qu	folder ktop\11_21 (iality solid m	CNC Router_ZDTU) F

Рис.1.6. Визначення кількості частот

Запускаємо дослідження – **Run This Study.** Результат дослідження зображено на Рис.1.7.

Рис.1.7. Результати досліджень

Аналіз коливання можна подивитися наступним чином. В Дереві побудови знаходимо **Result**, права кнопка миші - вибрати **List Resonant Frequencies** і відкриється вікно з результатами (Puc.1.8).

Mode No.	Eroquena (Ded/acc)	Eroquena (Herta)	Dariad(Seconds)		
Mode No.	1741	27 709	Penou(Seconds)		3.373e-01
2	288 17	45 864	0.021803		0,0100 01
3	324.87	51 705	0.019341		2 998e-01
4	449.09	71,475	0.013991		
5	484,38	77,091	0,012972		2.623e-01
6	505,09	80,388	0,01244		
7	534,23	85,026	0,011761		2 2 48 e-01
8	543,66	86,526	0,011557		2,2406 0
9	555,59	88,424	0,011309		1.874e-01
10	581,09	92,483	0,010813		1,0740-0
11	586,99	93,422	0,010704		1.400 - 01
12	613,71	97,675	0,010238		1,4996-0
13	645,91	102,8	0,0097276		1 1 2 1 - 0
14	728,91	116,01	0,00862	L .	_ 1,124e-0
15	784,61	124,87	0,0080081	•	7 405 44
16	800,9	127,47	0,0078452		_ 7,495e-02
17	834,08	132,75	0,007533		
18	837,55	133,3	0,0075018		
19	842,79	134,13	0,0074552		
	070.01	120.07	0.0071905		0.000e+0

Рис.1.8. Результати резонансних частот

Визначаємо масову	участь. В Дереві побудови	и знаходимо Result ,	права кнопка миші
- вибрати List Mass Partici	pation і відкриється вікно	з результатами (Рис	c.1.9.)

Aass Partici	pation (Normalize	ed)			-	×
Study name:	łастота 1					
Mode No.	Freq (Hertz)	Xdirection	Y direction	Z direction		
1	27,709	0,66086	1,2716e-15	3,8956e-15		
2	45,864	1,0319e-12	0,076875	1,7666e-07		
3	51,705	0,01493	5,1219e-12	5,9764e-14		
4	71,475	1,122e-13	3,9824e-05	0,0037201		
5	77,091	5,3838e-15	3,7289e-05	0,70496		
6	80,388	1,1089e-14	0,020805	0,0079136		
7	85,026	1,7792e-13	0,00099682	0,012631		
8	86,526	7e-13	0,0056212	0,0078495		
9	88,424	0,00015156	5,489e-11	3,3918e-10		
10	92,483	0,13822	6,1828e-14	6,8819e-13		
11	93,422	6,2814e-12	0,00032957	0,0040046		
12	97,675	0,0022113	1,059e-14	3,07e-14		
13	102,8	2,0483e-13	0,0026693	0,00027305		
14	116,01	1,9874e-15	0,015684	7,9223e-05		
15	124,87	5,3935e-17	0,029398	5,4657e-06		
16	127,47	9,0821e-14	0,01344	0,0017964		
17	132,75	0,021665	7,8756e-14	2,8488e-13		
18	133,3	0,0017518	2,5419e-13	1,2326e-11		
19	134,13	9,075e-14	0,0017602	0,069398		
20	139,07	7,4459e-14	0,0059931	0,0016001		
		Sum X = 0,83979	Sum Y = 0,17365	Sum Z = 0,81423		
Close			Save			Help

Рис.1.9. Результати з визначення масової участі (20 частот)

Аналізуючи дані, можна зробити висновок, що коливання в основному відбуваються по осі X, і щоб оцінити результат коливання в повному обсязі – 20 частот виявляється замало.

Тому в Дереві побудови дослідження знаходимо знову **Частота1***, натискаємо правою кнопкою миші і вибираємо властивості (**Properties**). В **Number of frequencies** задаємо кількість частот – 80, всі інші параметри за умовчанням, як було на Рис.6. Запускаємо дослідження **Run This Study.** Результат дослідження зображено на Рис.1.10. Для подальшого детального аналізу можна натиснути Save і зберегти значення в Excel.

lode No.	Freq (Hertz)	X direction	Y direction	Z direction		-
1	27,709	0,66086	1,2716e-15	3,8956e-15		
2	45,864	1,0319e-12	0,076875	1,7666e-07		
3	51,705	0,01493	5,1219e-12	5,9764e-14		
4	71,475	1,122e-13	3,9824e-05	0,0037201		
5	77,091	5,3838e-15	3,7289e-05	0,70496		
6	80,388	1,1089e-14	0,020805	0,0079136		
7	85,026	1,7792e-13	0,00099682	0,012631		
8	86,526	7e-13	0,0056212	0,0078495		
9	88,424	0,00015156	5,489e-11	3,3918e-10		
10	92,483	0,13822	6,1828e-14	6,8819e-13		
11	93,422	6,2814e-12	0,00032957	0,0040046		
12	97,675	0,0022113	1,059e-14	3,07e-14		
13	102,8	2,0483e-13	0,0026693	0,00027305		
14	116,01	1,9874e-15	0,015684	7,9223e-05		
15	124,87	5,3935e-17	0,029398	5,4657e-06		
16	127,47	9,0821e-14	0,01344	0,0017964		
17	132,75	0,021665	7,8736e-14	2,8496e-13		
18	133,3	0,0017518	2,5414e-13	1,2327e-11		
19	134,13	9,0799e-14	0,0017602	0,069398		
20	139,07	6,8061e-14	0,0059931	0,0016001		
21	141,33	0,015198	2,0124e-11	5,0273e-13		
22	141,82	1,9705e-11	0,016078	0,00055972		
23	150,56	7,6228e-15	0,0019853	0,026499		
24	155,38	7,4485e-15	5,2784e-06	0,0049345		
25	158,62	1,9433e-13	0,00075815	4,4215e-05		
26	159,43	0,024136	2,864e-16	7,7558e-16		
27	175,95	5,9586e-06	4,6506e-09	1,3391e-10		
28	175.99	3.7521e-13	0.058461	0.0016134		

Рис.10. Результати дослідження з визначення масової участі (80 частот)

На Рис.1.11. зображено загальний вигляд даних результатів досліджень після експортування в Excel.

Mode No.	Freq (Hertz)	X direction	Y direction	Z direction
1	27,709	0,66086	1,27E-15	3,90E-15
2	45,864	1,03E-12	0,076875	1,77E-07
3	51,705	0,01493	5,12E-12	5,98E-14
4	71,475	1,12E-13	3,98E-05	0,0037201
5	77,091	5,38E-15	3,73E-05	0,70496
6	80,388	1,11E-14	0,020805	0,0079136
7	85,026	1,78E-13	0,00099682	0,012631
8	86,526	7,00E-13	0,0056212	0,0078495
9	88,424	0,00015156	5,49E-11	3,39E-10
10	92,483	0,13822	6,18E-14	6,88E-13
11	93,422	6,28E-12	0,00032957	0,0040046
12	97,675	0,0022113	1,06E-14	3,07E-14
13	102,8	2,05E-13	0,0026693	0,00027305
14	116,01	1,99E-15	0,015684	7,92E-05
15	124,87	5,39E-17	0,029398	5,47E-06
16	127,47	9,08E-14	0,01344	0,0017964
17	132,75	0,021665	7,87E-14	2,85E-13
18	133,3	0,0017518	2,54E-13	1,23E-11
19	134,13	9,08E-14	0,0017602	0,069398
20	139 <mark>,</mark> 07	6,81E-14	0,0059931	0,0016001
21	141,33	0,015198	2,01E-11	5,03E-13
22	141,82	1,97E-11	0,016078	0,00055972
23	150,56	7,62E-15	0,0019853	0,026499
24	155,38	7,45E-15	5,28E-06	0,0049345
25	158,62	1,94E-13	0,00075815	4,42E-05
26	159,43	0,024136	2,86E-16	7,76E-16
27	175,95	5,96E-06	4,65E-09	1,34E-10
1		and the second se		

Рис.1.11. Вигляд результатів досліджень після експортування в Excel

На основі частотного дослідження створюємо динамічне дослідження. Для цього знизу на вкладці дослідження, в нашому випадку це Частота 1 натиснути правою кнопкою миші Copy Study (Puc.1.12). Таким чином ми скопіюємо дослідження для подальших змін.

Рис.1.12. Копіювання дослідження

Вибираємо Linear Dynamic і в Options вибираємо Harmonic і створюємо нове динамічне дослідження (Рис.1.13).

Рис. 1.13. Створення динамічного дослідження

Задаємо коефіцієнт демпфування. В Дереві побудови правою кнопкою миші натискаємо на **Damping** і вибираємо **Edit/Define** (Рис.1.14).

Рис.1.14. Задавання параметрів демпфування

В **Damping Ratios** задаємо 0.04 і натискаємо ОК. Коефіцієнт демпфування заданий (Рис.1.15.).

Рис.1.15. Коефіцієнт демпфування

В Дереві побудови правою кнопкою миші натискаємо **Dynamic 1 from (Частота 1)*** і вибираємо **Properties**. У вкладці **Harmonic Options** верхній ліміт (**Upper limit**) ставимо найвище значення частот, яке у нас вийшло в частотному досліджені при 80 заданих частотах. В нашому випадку це 495 (Рис.1.16).

Harmo	onic						\times
Freque	ency Options	Harmonic	Options	Notification	Remar	k	
	Operating fre	equency lim	nits				1
	Unite	- q acc y	Ovelos /so	c (Uz)			
		l	0	c (i iz)			
Ē	Lower limit	: +•	495		-		
-	opper inni		155		_		
L							
					Adva	anced Options	
				ОК	:	Отмена	Справка

Рис.1.16. Верхній ліміт частот

Тепер задаємо навантаження. Правою кнопкою миші натикаємо External Loads і вибираємо Uniform Base Excitation (Puc.1.17.).

Рис.1.17. Вибір навантаження

Вибираємо балку, на яку будемо накладати навантаження і напрямок дії навантаження – де значення буде 0.1 мм (Рис.1.18.)

Uniform Base Excitation	0	
Message	^	
The excitation is applied to all locations restrained the specified directions.	d in	
Type Displacement Velocity Acceleration	^	
Face<1>@Frame_ZDTU(update)<1>		
Displacement mm Displacement mm Displacement mm Displacement mm Displacement mm Displacement mm Displacement mm Displacement Di		
Variation with Frequency	^	

Рис.1.18. Визначення напрямку навантаження

Після заданих параметрів запускаємо розрахунок дослідження – **Run This Study.** Результат дослідження зображено на Рис.1.19.

Рис.1.19. Результат дослідження

Далі знаходимо **Result**, натискаємо правою кнопкою миші і вибираємо **Define Response Graph.**

За промовчанням система пропонує вибрати конкретний вузол, але ми обираємо вузол де ми задавали навантаження, тобто елемент – наша балка. Вибираємо Y axis: **Displacement – UY: Y Displacement, mm.** (Puc.1.20).

Image: Image	▶ 🧐 ZDTU_CNC_ROUTER	Study name: Dynamic 1 from [¹ Mesh type:
Response ^		•
All nodes At remote locations Node 495 Node 496 Node 497 Node 498 Node 499 Node 500 Node 501		
X axis:	Location:: 499	
Frequency V	X, Y, Z Location: 909; 545; 2,4	41e+03 mm
Y axis:		
Displacement		
UY: Y Displacement		
mm ~		

Рис. 1.20. Задані параметри

Побудовану епюру показано на Рис.1.21.

Response Graph

Рис.21. Отримана епюра

Літературні джерела

1.SOLIDWORKSWebHelp[Електронний ресурс]// DassaultSystèmes.—2029.—Режим доступу до ресурсу:https://help.solidworks.com/2019/English/SolidWorks/sldworks/r_welcome_sw_online_help.htm?verRedirect=1

2.SOLIDWORKS Tech Blog [Електронний ресурс]// DassaultSystèmes.—2024.—Режим доступу до ресурсу:https://blogs.solidworks.com/tech/

3. J. Ed A. Finite Element Analysis Concepts via SolidWorks [Електронний ресурс] / Akin J. Ed // Rice University. – 2009. – Режим доступу до ресурсу: <u>https://www.clear.rice.edu/mech403/HelpFiles/FEAC_final.pdf</u>.