Лабораторна робота № 3 НАЛАГОДЖЕННЯ ТА ДОСЛІДЖЕННЯ РОБОТИ ВІРТУАЛЬНИХ ЛОКАЛЬНИХ МЕРЕЖ НА ОСНОВІ ГРУПУВАННЯ ПОРТІВ ТА ТРАНКОВИХ ПРОТОКОЛІВ У МЕРЕЖІ НА БАЗІ КОМУТАТОРІВ CISCO

Мета заняття: ознайомитися з особливостями функціонування та налагодження роботи технології VLAN на основі групування портів та транкових протоколів на обладнанні Сіѕсо; отримати практичні навички налагодження, моніторингу та діагностування роботи VLAN, побудованих з використанням групування портів та транкових протоколів у мережі, побудованій на базі обладнання Сіѕсо; дослідити процес роботи технологій VLAN на основі групування портів та транкових протоколів та процеси передачі даних у побудованій мережі.

Теоретичні відомості

Рекомендації стосовно підвищення рівня захищеності мереж, побудованих з використанням технологій VLAN

Багатьма виробниками обладнання розроблені базові рекомендації, що стосуються підвищення рівня захищеності комутованих мереж, які побудовані з використанням технологій VLAN. Часто ці рекомендації є комплексними і враховують використання і інших технологій та протоколів. Рекомендації щодо застосування VLAN, розроблені фірмою Cisco, є наступними:

1. Відключити всі незадіяні порти/інтерфейси комутатора та помістити їх у VLAN, що не використовується.

2. Використосувати як VLAN керування пристроєм нестандартну VLAN (будь-яку VLAN, окрім Default VLAN – VLAN 1, що створюється за замовчуванням).

3. Не використовувати VLAN 1 для будь-яких операцій.

4. Налагодити всі порти/інтерфейси комутатора, до яких підключені кінцеві користувачі, як порти/інтерфейси доступу (вимкнути функціонування протоколу DTP на цих портах).

5. Точно (недвозначно) налагодити параметри транкових інфраструктурних портів/інтерфейсів. 6. Завжди використовувати призначені ідентифікатори (номери) VLAN для всіх транкових портів/інтерфейсів.

7. Налагодити тегуванння для Native VLAN на транкових каналах та налагодити відкидання нетегованих кадрів.

8. Встановити стан порта/інтерфеса за замовчуванням як відключений.

Порядок налагодження VLAN на основі групування портів та транкових протоколів на комутаторі Cisco

Порядок налагодження віртуальної локальної мережі на базі комутатора Cisco при використанні групування портів та транкового протоколу 802.1Q згідно з рекомендаціями виробника є таким:

1. Створити віртуальну локальну комп'ютерну мережу (обов'язково).

2. Вказати назву для створеної віртуальної локальної комп'ютерної мережі (необов'язково).

3. Для обраного інтерфейсу/порту доступу (або групи інтерфейсів/портів) вказати тип – інтерфейс/порт доступу (необов'язково).

4. Для обраного інтерфейсу/порту доступу (або групи інтерфейсів/портів) вказати належність до створеної віртуальної локальної комп'ютерної мережі (обов'язково).

5. Для обраного транкового інтерфейсу/порту (або групи інтерфейсів/портів) вказати тип — транковий інтерфейс/порт (обов'язково).

6. Для обраного транкового інтерфейсу/порту налагодити додаткові параметри транкового каналу (необов'язково).

7. Для обраного транкового інтерфейсу/порту налагодити додаткові параметри передачі кадрів (заборонені і дозволені VLAN, native VLAN тощо) (необов'язково).

Команди налагодження VLAN на основі групування портів та транкових протоколів на комутаторах Cisco

Налагодження VLAN на основі групування портів та транкових протоколів на комутаторах Сізсо є досить складним процесом, який передбачає використання досить великої кількості операцій адміністрування. Водночас цей процес вимагає від адміністратора чіткого розуміння фізичної і логічної структури мережі та акуратного виконання команд налагодження. Дуже важливим є питання правильного налагодження ліній доступу та транкових (магістральних) каналів. Особливістю налагодження транкових каналів на комутаторах Сізсо є використання на транкових портах/інтерфейсах фірмового протоколу канального рівня DTP (Dynamic Trunking Protocol). Основне призначення цього протоколу – проведення переговорів про налагодження транкового каналу та транкового протоколу, що буде використовуватися (ISL чи 802.1Q). На більшості сучасних комутаторів Сізсо протокол ISL не застосовується, а за замовчуванням встановлюється протокол 802.1Q.

Для створення VLAN на комутаторі Сіsco застосовується команда vlan. Зазначення імені VLAN здійснюється за допомогою команди **пате**. Встановлення відповідних режимів, налагодження належності портів до відповідних VLAN та налагодження параметрів транкових каналів здійснюється командами, що похідні від команди switchport.

Налагодження інтерфейса/порта комутатора як інтерфейсу/порту доступу здійснюється за допомогою команди switchport mode access, відповідно налагодження інтерфейса/порта комутатора як транкового інтерфейсу /порту – за допомогою команди switchport mode trunk. Розширеним аналогом команди switchport mode access ϵ команда switchport host, яка також дає можливість вказати тип інтерфейсу/порту доступу, але окрім цього активує використання на інтерфейсі/порті функції Spanning-tree Portfast та деактивує використання даного інтерфейсу/порту як складової агрегованого каналу.

Команда switchport access vlan застосовується для зазначення номера VLAN, до якої належить інтерфейс/порт. Ця команда також дає змогу автоматично створити нову VLAN і включити до цієї VLAN інтерфейс/порт, на якому вона виконана.

Налагодження режиму для транкового каналу здійснюється за допомогою команди **switchport mode dynamic**. Комбінації режимів інтерфейсів, за яких увімкнеться транковий протокол і транковий канал стане активним, наведені у табл. 1.

Таблиця 1

TC	•		•••		
Комбінації	режимів	лля	активани	транкового	каналу
	Permine				

Режим на	Режим	ерфейсі	
поточному інтерфейсі	on (trunk)	dynamic auto	dynamic desirable

on (trunk)	+	+	+
dynamic auto	+	_	+
dynamic desirable	+	+	+

Якщо виникає потреба налагодити транковий канал без використання протоколу DTP (наприклад, якщо один із пристроїв, що входять до складу каналу не є пристроєм Cisco), у парі з командою switchport застосовується mode trunk команда switchport nonegotiate. Результатом роботи цих команд є те, що канал активується, а повідомлення протоколу DTP не пересилаються.Команда switchport trunk дає змогу здійснювати специфічне налагодження транкового каналу, наприклад, дозволити передачу кадрів одних VLAN і заборонити передачу кадрів інших. Команда switchport priority дає змогу встановлювати пріоритети для кадрів, що належать різним VLAN. Команда switchport native vlan застосовується для встановлення певної VLAN, як Native VLAN – VLAN, кадри якої не тегуються при передачі через транковий канал.

Відміна дії вищезгаданих команд – використання форми **no**. Синтаксис розглянутих команд та режими їх застосування наведено нижче.

Синтаксис команди vlan (режим глобального конфігурування):

vlan *vlan-id*,

де *vlan-id* – ідентифікатор (номер) VLAN, може зазначатися в межах від 1 до 4094, для мереж Ethernet типове використання у діапазоні від 2 до 1001.

Синтаксис команди **пате** (режим конфігурування VLAN):

name text-string,

де *text-string* – текстова назва VLAN; якщо текстова назва VLAN явно не зазначається, то система автоматично встановлює назву вигляду VLANDDDD, де DDDD – чотирицифровий десятковий номер VLAN.

Синтаксис команди switchport access vlan (режим конфігурування інтерфейсу/групи інтерфейсів):

switchport access vlan {vlan-id | dynamic},

де *vlan-id* – ідентифікатор VLAN;

dynamic – параметр, який зазначає, що належність інтерфейсу/порту до VLAN визначається динамічно (за MAC-адресою), шляхом запиту до сервера VMPS (VLAN Membership Policy Server). Синтаксис команди switchport host (режим конфігурування інтерфейсу/групи інтерфейсів):

switchport host.

Команда не має параметрів.

Синтаксис команди **switchport mode** (режим конфігурування інтерфейсу/групи інтерфейсів):

switchport mode {access | dynamic {auto | desirable} | trunk},

де **access** – зазначає тип інтерфейсу/порту – інтерфейс/порт доступу;

trunk – зазначає тип інтерфейсу/порту – транковий інтерфейс/порт та активує стан trunk (відповідає значенню **on**);

dynamic – встановлення переговорного режиму для транкового інтерфейсу, може доповнюватися значенням auto або desirable; за замовчуванням встановлюється dynamic auto;

auto – інтерфейс/порт знаходиться в автоматичному режимі і буде переведений у стан trunk, як тільки інтерфейс на іншому кінці знаходиться у режимі **on** або **desirable**;

desirable – інтерфейс/порт готовий перейти у стан trunk залежно від стану інтерфейсу на іншому кінці каналу.

Синтаксис команди switchport nonegotiate (режим конфігурування інтерфейсу/групи інтерфейсів):

switchport nonegotiate.

Команда не має параметрів.

Синтаксис команди **switchport trunk** (режим конфігурування інтерфейсу/групи інтерфейсів):

switchport trunk {allowed vlan vlan-list | native vlan vlan-id | pruning vlan vlan-list},

де allowed vlan – службова конструкція, за допомогою якої створюється список дозволених VLAN, для яких транковий інтерфейс може пересилати та отримувати трафік у тегованій формі; за замовчуванням vlan-list для цієї конструкції дорівнює all; vlan-list у цьому випадку не може дорівнювати none;

native vlan – службова конструкція, за допомогою якої створюється список VLAN, для яких транковий інтерфейс може пересилати і отримувати трафік у нетегованій формі; pruning vlan – службова конструкція, за допомогою якої створюється список VLAN, для яких транковий інтерфейс активований для підтримки режиму VTP-pruning; *vlan-list* у цьому випадку не може дорівнювати **all**;

vlan-list – може набувати значень, що наведені нижче; деякі з цих значень доповнюються параметрами ідентифікаторів VLAN IDs:

vlan-atom – список ідентифікаторів VLAN (наприклад, 10-20; 10-30,35-40);

add – додати окрему VLAN або групу VLAN за списком;

all – додати всі VLAN;

except – виключити окрему VLAN або групу VLAN за списком; none – пустий список;

remove – виключити VLAN зі списку

Синтаксис команди switchport native (режим конфігурування інтерфейсу/групи інтерфейсів):

switchport native vlan *vlan-id*, де *vlan-id* – ідентифікатор VLAN.

Для роботи з Voice VLAN (голосовими VLAN, які забезпечують передачу голосового трафіка від IP-телефонів чи інших пристроїв через комутатор) використовуються команди switchport voice та switchport priority. Команда switchport voice призначена для встановлення типу для певної VLAN, команда switchport priority призначена для зміни пріоритету трафіка для певного порту.

Синтаксис команди **switchport voice** (режим конфігурування інтерфейсу/групи інтерфейсів):

switchport voice vlan *vlan-id*,

де *vlan-id* – ідентифікатор VLAN.

Синтаксис команди **switchport priority** (режим конфігурування інтерфейсу/групи інтерфейсів):

switchport priority extend { cos cos-value | trust },

де **cos** – службова конструкція, яка вказує порту змінити пріоритет в отриманому від підключеної робочої станції чи іншого пристрою кадрі на значення *cos-value*; як правило, використовується, якщо до порту підключений IP-телефон;

cos-value – значення пріоритету трафіка, яке може змінюватися у межах від 0 до 7; значення за замовчуванням дорівнює 0; trust – залишати значення отриманого пріоритету без змін.

Команди моніторингу та діагностики роботи VLAN на комутаторах Cisco

Для перегляду параметрів налагоджень VLAN на комутаторах Сіясо застосовуються як команди загального призначення, так і спеціалізовані команди. Серед команд загального призначення можна виділити такі команди: show interfaces, show mac-address-table, show running-config, show startup-config. Перелік спеціалізованих команд show, необхідних для моніторингу та діагностики роботи VLAN на основі групування портів та транкових протоколів, є відносно невеликим і включає в себе команди show vlan, show interfaces switchport, show interfaces trunk, show dtp та їх модифікації. Повний перелік спеціалізованих команд моніторингу та діагностики роботи VLAN наведений у табл. 2.

Таблиця 2

Призначення				
Виведення всієї інформацію про VLAN та їх параметри				
Виведення інформації про VLAN у скороченому вигляді				
Виведення інформації про VLAN за її ідентифікатором (номером)				
Вивести інформацію про VLAN за її назвою				
Виведення сумарної інформації про кількість створених				
VLAN, кількість VLAN із розширеного діапазону, кількі-				
кість VTP VLAN.				
Виведення інформації про налагодження параметрів				
VLAN для всіх інтерфейсів/портів				
Виведення інформації про налагодження параметрів				
VLAN для певного інтерфейсу/порту				
Виведення інформації про транкові канали та їх параметри				
Виведення інформації про параметри інтерфейсу певної				
VLAN. Інтерфейс повинен бути попередньо створений				
Виведення інформації про параметри інформаційного				
обміну за протоколом DTP для комутатора				
Виведення інформації про параметри інформаційного обміну				
за протоколом DTP для певного транкового інтерфейсу				

Перелік команд show діагностики роботи VLAN на комутаторах Cisco

Модельний приклад налагодження VLAN на основі групування портів та транкового протоколу 802.1Q на комутаторах Cisco

Розглянемо специфіку налагодження VLAN на основі групування портів та транкового протоколу 802.1Q для мережі, схема якої наведена на рис. 1. Для побудови мережі використані комутатори моделі WS-C2960-24TT-L. Особливістю данного прикладу налагодження є те, що з метою демонстрації доступності/недоступності вузлів, які належать різними VLAN, застосовуються IP-адреси, що належать одній IP-мережі. На практиці застосовується інший підхід: одна VLAN – одна IP-мережа.

Рис. 1. Приклад мережі

Під час побудови даної мережі для з'єднання пристроїв використано дані табл. 3. Для налагодження параметрів адресації пристроїв використано дані табл. 4. Для створення та налагодження VLAN використано дані табл. 5. Для зазначення належності робочих станцій до відповідних VLAN та для формування транкових каналів використано дані табл. 3.

Таблиця 3

Пристрій	Канал	Інтерфейси	Підключення	Підключення	N⁰
пристрии	Runar	штерфенен	до пристрою	до інтерфейсів	VLAN
	Канал підключення РС	Fa0/1	WS_A_1	Fa0	10
	Канал підключення РС	Fa0/2	WS_A_2	Fa0	10
	Канал підключення РС	Fa0/3	Не викори	стовується	1001
	Канал підключення РС	Fa0/10	Не викори	стовується	1001
	Канал підключення РС	Fa0/11	WS_B_1	Fa0	20
Комутатор	Канал підключення РС	Fa0/12	WS_B_2	Fa0	20
SW_1	Канал підключення РС	Fa0/13	Не викори	стовується	1001
	•••				
	Канал підключення РС	Fa0/24	Не викори	стовується	1001
	Транковий канал зв'язку		Kongraton		
	між комутаторами для	Gig0/1	SW 2	Gig0/1	_
	VLAN 10 та VLAN 20		5 W_2		
	Канал підключення РС	Gig0/2	WS_MGMT	Fa0	1000
	Канал підключення РС	Fa0/1	WS_A_3	Fa0	10
	Канал підключення РС	Fa0/2	Не викори	стовується	1001
	Канал підключення РС	Fa0/10	Не викори	стовується	1001
	Канал підключення РС	Fa0/11	WS_B_3 Fa0		20
Комутатор	Канал підключення РС	Fa0/12	Не викори	стовується	1001
SW_2					
	Канал підключення РС	Fa0/24	Не викори	стовується	1001
	Транковий канал зв'язку		Kongraton		
	між комутаторами для	Gig0/1	SW 1	Gig0/1	_
	VLAN 10 та VLAN 20		5 W_1		
	Канал підключення РС	Gig0/2			
WS_A_1	Канал підключення РС	Fa0		Fa0/1	10
WS_A_2	Канал підключення РС	Fa0	Vargementer	Fa0/2	10
WS_B_1	Канал підключення РС	Fa0		Fa0/11	20
WS_B_2	Канал підключення РС	Fa0	2 W 1	Fa0/12	20
WS_MGMT	Канал підключення РС	Fa0		Gig0/2	1000
WS_A_3	Канал підключення РС	Fa0	Комутатор	Fa0/1	10
WS_B_3	Канал підключення РС	Fa0	SW_2	Fa0/11	20

Параметри з'єднань пристроїв та каналів для прикладу

Таблиця 4

Мережа/ Пристрій	Інтерфейс/Мережний адаптер/Шлюз	МАС-адреса	IP-адреса	Маска	Пре фікс
Мережа	-	_	195.10.1.0	255.255.255.0	/24
Комутатор	Інтерфейс Vlan 1000	00-D0-58-46-26-01	195.10.1.252	255.255.255.0	/24
SW_1	Шлюз за замовчуванням	-	195.10.1.254	_	_
Комутатор	Інтерфейс Vlan 1000	00-0C-CF-1D-BD-01	195.10.1.253	255.255.255.0	/24
SW_2	Шлюз за замовчуванням	-	195.10.1.254	_	_
Робоча станція	Мережний адаптер	00-07-EC-8C-41-A8	195.10.1.11	255.255.255.0	/24
WS_A_1	Шлюз за замовчуванням	-	195.10.1.254	-	
Робоча станція	Мережний адаптер	00-04-9A-34-91-69	195.10.1.12	255.255.255.0	/24
WS_A_2	Шлюз за замовчуванням	-	195.10.1.254	-	
Робоча станція	Мережний адаптер	00-0C-CF-07-C1-E7	195.10.1.13	255.255.255.0	/24
WS_A_3	Шлюз за замовчуванням	-	195.10.1.254	-	
Робоча станція	Мережний адаптер	00-0A-F3-60-0A-3E	195.10.1.21	255.255.255.0	/24
WS_B_1	Шлюз за замовчуванням	-	195.10.1.254	-	
Робоча станція	Мережний адаптер	00-D0-FF-55-DC-66	195.10.1.22	255.255.255.0	/24
WS_B_2	Шлюз за замовчуванням	_	195.10.1.254	_	—
Робоча станція	Мережний адаптер	00-E0-B0-D8-D2-4A	195.10.1.23	255.255.255.0	/24
WS_B_3	Шлюз за замовчуванням	-	195.10.1.254	_	_
Робоча станція	Мережний адаптер	00-D0-97-42-2B-84	195.10.1.250	255.255.255.0	/24
WS MGMT	ППОЗ за замовчуванням	_	195.10.1.254	_	_

Параметри ІР-адресації мережі

Таблиця 5

Параметри налагодження VLAN комутаторів для прикладу

Призначення VLAN	Назва	Номер
VLAN за замовчуванням ¹	Default	1
Мережа А	LAN-A-VLAN10	10
Мережа В	LAN-B-VLAN20	20
Мережа керування пристроями ²	MGMT-VLAN1000	1000
Невикористані порти/інтерфейси	UNUSED-VLAN1001	1001

Примітка: 1 – з метою підвищення рівня захищеності мережі дану VLAN не рекомендується застосовувати, 2 – у даному прикладі VLAN створюється та до неї вводиться робоча станція керування.

Сценарії створення VLAN, налагодження належності портів до певних VLAN, створення транкового каналу для комутаторів мережі наведені нижче. У даному прикладі по транковому каналу дозволяється передавати дані VLAN 10, 20, 1000. Для перевірки можливості підключення по VLAN керування на комутаторах налагоджено віддалений доступ на базі протоколу Telnet з використанням механізму користувачів.

•••

SW_1>enable

SW_1#configure terminal

SW_1(config)#no cdp run

SW 1(config)#vlan 1000

SW_1(config-vlan)#name MGMT-VLAN1000

SW 1(config-vlan)#exit

SW 1(config)#vlan 1001

SW_1(config-vlan)#name UNUSED-VLAN1001

SW_1(config-vlan)#exit

SW_1(config)#vlan 10

SW_1(config-vlan)#name LAN-A-VLAN10

SW_1(config-vlan)#exit

SW_1(config)#vlan 20

SW_1(config-vlan)#name LAN-B-VLAN20

SW_1(config-vlan)#exit

SW 1(config)#interface GigabitEthernet0/2

SW 1(config-if-range)#description MGMT-PORT-VLAN1000

SW_1(config-if-range)#switchport mode access

SW_1(config-if-range)#switchport access vlan 1000

SW_1(config-if-range)#exit

SW_1(config)#interface range FastEthernet 0/1-2

SW_1(config-if-range)#description LAN-A-PORT-VLAN10

SW_1(config-if-range)#switchport mode access

SW 1(config-if-range)#switchport access vlan 10

SW 1(config-if-range)#exit

SW 1(config)#interface range FastEthernet 0/11-12

SW_1(config-if-range)#description LAN-B-PORT-VLAN-20

SW 1(config-if-range)#switchport mode access

SW_1(config-if-range)#switchport access vlan 20

SW 1(config-if-range)#exit

SW_1(config)#interface range FastEthernet 0/3-10, FastEthernet 0/13-24

SW_1(config-if-range)#description UNUSED-PORT-VLAN1001

SW_1(config-if-range)#switchport mode access

SW_1(config-if-range)#switchport access vlan 1001

SW_1(config-if-range)#shutdown

SW_1(config-if-range)#exit

SW_1(config)#interface GigabitEthernet0/1

SW_1(config-if)#switchport mode trunk

SW_1(config-if)#switchport nonegotiate

SW_1(config-if)#switchport trunk allowed vlan add 10

SW_1(config-if)#switchport trunk allowed vlan add 20

SW_1(config-if)#switchport trunk allowed vlan add 1000

SW_1(config-if)#exit

SW_1(config)#interface vlan 1000

SW_1(config-if)#description MGMT-INTERFACE-VLAN1000

SW 1(config-if)#ip address 195.10.1.252 255.255.255.0

SW_1(config-if)#no shutdown

SW_1(config-if)#exit

SW_1(config)#username adminer privilege 15 secret adminerpass

SW_1(config)#username technic privilege 1 secret technicpass

SW_1(config)#enable secret adminerpass2

SW 1(config)#line vty 0 4

SW_1(config-line)#login local

SW_1(config-line)#transport input telnet

SW_1(config-line)#exit

SW_1(config)#exit

```
SW 1#
```

•••

•••

SW_2>enable

SW_2#configure terminal

SW 2(config)#no cdp run

SW 2(config)#vlan 1000

SW 2(config-vlan)#name MGMT-VLAN1000

SW 2(config-vlan)#exit

SW 2(config)#vlan 1001

SW_2(config-vlan)#name UNUSED-VLAN1001

SW_2(config-vlan)#exit

SW 2(config)#vlan 10

SW_2(config-vlan)#name LAN-A-VLAN10

SW_2(config-vlan)#exit

SW_2(config)#vlan 20

SW_2(config-vlan)#name LAN-B-VLAN20

SW_2(config-vlan)#exit

SW_2(config)#interface FastEthernet 0/1

SW_2(config-if-range)#description LAN-A-PORT-VLAN10

SW_2(config-if-range)#switchport mode access

SW_2(config-if-range)#switchport access vlan 10

SW_2(config-if-range)#exit

SW_2(config)#interface FastEthernet 0/11

SW_2(config-if-range)#description LAN-B-PORT-VLAN-20

SW_2(config-if-range)#switchport mode access

SW_2(config-if-range)#switchport access vlan 20

SW_2(config-if-range)#exit

SW_2(config)#interface range FastEthernet 0/2-10, FastEthernet 0/12-24, GigabitEthernet0/2

SW_2(config-if-range)#description UNUSED-PORT-VLAN1001

SW_2(config-if-range)#switchport mode access

SW_2(config-if-range)#switchport access vlan 1001

SW_2(config-if-range)#shutdown

SW_2(config-if-range)#exit

SW_2(config)#interface GigabitEthernet0/1

SW_2(config-if)#switchport mode trunk

SW_2(config-if)#switchport nonegotiate

SW_2(config-if)#switchport trunk allowed vlan add 10

SW 2(config-if)#switchport trunk allowed vlan add 20

SW_2(config-if)#switchport trunk allowed vlan add 1000

SW_2(config-if)#exit

SW_2(config)#interface vlan 1000

SW_2(config-if)#description MGMT-INTERFACE-VLAN1000

SW_2(config-if)#ip address 195.10.1.253 255.255.255.0

SW_2(config-if)#no shutdown

SW_2(config-if)#exit

SW_2(config)#username adminer privilege 15 secret adminerpass

SW_2(config)#username technic privilege 1 secret technicpass

SW_2(config)#enable secret adminerpass2

SW_2(config)#line vty 0 4 SW_2(config-line)#login local SW_2(config-line)#transport input telnet SW_2(config-line)#exit SW_2(config)#exit SW_2#

•••

Результати виконання команд моніторингу та діагностики роботи комутатора для розглянутого модельного прикладу

З метою перевірки досяжності кінцевих вузлів мережі з робочої станції WS_A_1 застосовано команду **ping**. Аналогічно перевірено досяжність комутаторів мережі з робочої станції керування WS_MGMT. Для перевірки віддаленого доступу використано термінальний додаток **Telnet**. З метою перегляду інформації про налагодження VLAN для розглянутого прикладу застосовано команди **show vlan**, **show interface switchport**, **show interfaces trunk**. Для перегляду таблиць комутації комутаторів застосовано команду **show mac-address-table**. Результати роботи зазначених команд наведено відповідно на рис. 2 - 7.

```
C:\>ping 195.10.1.12
Обмен пакетами с 195.10.1.12 по 32 байт:
Ответ от 195.10.1.12: число байт=32 время 21мс TTL=255
Ответ от 195.10.1.12: число байт=32 время 4мс TTL=255
Ответ от 195.10.1.12: число байт=32 время 2мс TTL=255
Ответ от 195.10.1.12: число байт=32 время 6мс TTL=255
Статистика Ping для 195.10.1.12:
    Пакетов: отправлено = 4, получено = 4, потеряно = 0 <0% потерь>,
Приблизительное время приема-передачи в мс:
   Минимальное = 2 мсек, Максимальное 21 мсек, Среднее = 8 мсек
C:\>
C:\>ping 195.10.1.13
Обмен пакетами с 195.10.1.13 по 32 байт:
Ответ от 195.10.1.13: число байт=32 время 23мс TTL=255
Ответ от 195.10.1.13: число байт=32 время 4мс TTL=255
Ответ от 195.10.1.13: число байт=32 время 2мс TTL=255
Ответ от 195.10.1.13: число байт=32 время 5мс TTL=255
Статистика Ping для 195.10.1.13:
    Пакетов: отправлено = 4, получено = 4, потеряно = 0 <0% потерь>,
Приблизительное время приема-передачи в мс:
   Минимальное = 2 мсек, Максимальное 23 мсек, Среднее = 8 мсек
C:\>
C:\>ping 195.10.1.21
Обмен пакетами с 195.10.1.21 по 32 байт:
Превышен интервал ожидания для запроса
Превышен интервал ожидания для запроса
Статистика Ping для 195.10.1.21:
   Пакетов: отправлено = 4, получено = 0, потеряно = 4 <100% потерь>,
C:\>
C:\>ping 195.10.1.22
Обмен пакетами с 195.10.1.22 по 32 байт:
Превышен интервал ожидания для запроса
. . .
Превышен интервал ожидания для запроса
Статистика Ping для 195.10.1.22:
   Пакетов: отправлено = 4, получено = 0, потеряно = 4 <100% потерь>,
C:\>
C:\>ping 195.10.1.23
Обмен пакетами с 195.10.1.23 по 32 байт:
Превышен интервал ожидания для запроса
Превышен интервал ожидания для запроса
Статистика Ping для 195.10.1.23:
   Пакетов: отправлено = 4, получено = 0, потеряно = 4 <100% потерь>,
C:\>
```

```
Рис. 2. Результат виконання команди ping на робочій станції WS A 1
```

```
C:\>ping 195.10.1.252
Обмен пакетами с 195.10.1.252 по 32 байт:
Ответ от 195.10.1.252: число байт=32 время 20мс TTL=255
Ответ от 195.10.1.252: число байт=32 время 4мс TTL=255
Ответ от 195.10.1.252: число байт=32 время 2мс TTL=255
Ответ от 195.10.1.252: число байт=32 время 5мс TTL=255
Статистика Ping для 195.10.1.252:
    Пакетов: отправлено = 4, получено = 4, потеряно = 0 <0% потерь>,
Приблизительное время приема-передачи в мс:
   Минимальное = 2 мсек, Максимальное 21 мсек, Среднее = 8 мсек
C:\>
C:\>ping 195.10.1.253
Обмен пакетами с 195.10.1.253 по 32 байт:
Ответ от 195.10.1.253: число байт=32 время 22мс TTL=255
Ответ от 195.10.1.253: число байт=32 время 4мс TTL=255
Ответ от 195.10.1.253: число байт=32 время 2мс TTL=255
Ответ от 195.10.1.253: число байт=32 время 6мс TTL=255
Статистика Ping для 195.10.1.253:
    Пакетов: отправлено = 4, получено = 4, потеряно = 0 <0% потерь>,
Приблизительное время приема-передачи в мс:
   Минимальное = 2 мсек, Максимальное 21 мсек, Среднее = 8 мсек
C:\>
```

```
Рис. 3. Результат виконання команди ping на робочій станції WS MGMT
```

```
...
C:>telnet 195.10.1.252
User Access Verificaton
Username: adminer
Password:
SW_1#...
SW_1#...
SW_1#exit
Подключение к уэлу утеряно.
C:>
```

Рис. 4. Результат виконання додатку **Telnet** на робочій станції WS_MGMT при віддаленому підключенні користувача **adminer** до комутатора SW 1

```
...
C:>telnet 195.10.1.253
User Access Verificaton
Username: technic
Password:
SW_2>enable
Password:
SW_2#...
...
SW_2#exit
Подключение к узлу утеряно.
C:>
```

Рис. 5. Результат виконання додатку **Telnet** на робочій станції WS_MGMT при віддаленому підключенні користувача **technic** до комутатора SW_2

SW_1: VLAN	∮show ∖ Name	rlan			Stat	tus	Ports			
default 10 LAN-A-VLAN10 20 LAN-B-VLAN20 1000 MGMT-VLAN1000 1001 UNUSED-VLAN1001					act: act: act: act: act:	ive ive ive ive ive	Fa0/1, 1 Fa0/11, Gig0/2 Fa0/3, 1 Fa0/7, 1 Fa0/13, Fa0/17, Fa0/21.	Fa0/2 Fa0/12 Fa0/4, Fa Fa0/8, Fa Fa0/14, 1 Fa0/18, 1 Fa0/22, 1	0/5, Fa 0/9, Fa Fa0/15, Fa0/19, Fa0/23.)/6)/10 Fa0/16 Fa0/20 Fa0/24
1002 1003 1004 1005 VLAN	fddi-o token- fddine trnet- Type	default -ring-defau et-default -default SAID	lt MTU	Parent	act: act: act: act: RingNo	ive ive ive ive Bridge	eNo Stp	BrdgMode	Trans1	Trans2
1 10 20 1000 1001 1002 1003 1004 1005 Remot	enet enet enet fddi tr fdnet trnet ce SPAN	100001 100010 100020 101001 101001 101002 101003 101004 101005 V VLANS	1500 1500 1500 1500 1500 1500 1500 1500	 - - - - - - - - - - - - - -		- - - - - - - -	- - - - - ieee ibm	- - - - - - - - - - - -	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
Prima	ary Sec	condary Type	e Ports	3						

SW_1#

Рис. 6. Результати виконання команди show vlan для комутатора SW_1

SW_2: VLAN	#show v Name	vlan			Sta	tus	Port	ts			
1 10 20 1000	defau LAN-A- LAN-B- MGMT-V	lt -VLAN10 -VLAN20 VLAN1000			act act act act	ive ive ive ive	Fa0, Fa0,	/1 /11			
1001	UNUSEI	O-VLAN1001			act	ive	Fa0, Fa0, Fa0, Fa0, Fa0, Fa0,	/2, E /6, E /10, /15, /19, /23,	Fa0/3, Fa0 Fa0/7, Fa0 Fa0/12, 1 Fa0/16, 1 Fa0/20, 1 Fa0/24, 0)/4, Fa()/8, Fa(Fa0/13, Fa0/17, Fa0/21, Gig0/2	0/5, 0/9, Fa0/14 Fa0/18 Fa0/22
1002 1003	fddi- token-	default -ring-defau	lt		act act	ive ive				-	
1004	fddine trnet	et-default			act	ive ive					
VLAN	Туре	SAID	MTU	Parent	RingNo	Bridge	eNo S	Stp	BrdgMode	Trans1	Trans2
1 10	enet enet	100001 100010	1500 1500	-	-	-		_	-	0	0
20	enet	100020	1500	-	-	-	-	-	-	0	0
1000	enet	101000	1500	-	-	-	-	-	-	0	0
1001	enet fddi	101001	1500	_	_	_		_	-	0	0
1003	tr	101003	1500	_	_	_	-	_	-	0	Ő
1004	fdnet	101004	1500	-	-	-		ieee	-	0	0
1005 Remot	trnet te SPA1	101005 N VLANs	1500	-	-	-	3	ibm	-	0	0
Prima	Primary Secondary Type Ports										
0											

SW_2#

Рис. 7. Результати виконання команди show vlan для комутатора SW 2

SW 1#show interfaces GigabitEthernet 0/1 switchport Name: Gig0/1 Switchport: Enabled Administrative Mode: trunk Operational Mode: trunk Administrative Trunking Encapsulation: dotlg Operational Trunking Encapsulation: dotlg Negotiation of Trunking: Off Access Mode VLAN: 10 (LAN-A-VLAN10) Trunking Native Mode VLAN: 1 (default) Voice VLAN: none Administrative private-vlan host-association: none Administrative private-vlan mapping: none Administrative private-vlan trunk native VLAN: none Administrative private-vlan trunk encapsulation: dotlg Administrative private-vlan trunk normal VLANs: none Administrative private-vlan trunk private VLANs: none Operational private-vlan: none Trunking VLANs Enabled: AI Pruning VLANs Enabled: 2-1001 Capture Mode Disabled Capture VLANs Allowed: ALL Protected: false Appliance trust: none SW 1#

Рис. 8. Результати виконання команди show interfaces GigabitEthernet 0/1 switchport для комутатора SW_1

SW 2#show interfaces gigabitEthernet 0/1 switchport Name: Gig0/1 Switchport: Enabled Administrative Mode: trunk Operational Mode: trunk Administrative Trunking Encapsulation: dotlg Operational Trunking Encapsulation: dotlq Negotiation of Trunking: Off Access Mode VLAN: 10 (LAN-A-VLAN10) Trunking Native Mode VLAN: 1 (default) Voice VLAN: none Administrative private-vlan host-association: none Administrative private-vlan mapping: none Administrative private-vlan trunk native VLAN: none Administrative private-vlan trunk encapsulation: dotlg Administrative private-vlan trunk normal VLANs: none Administrative private-vlan trunk private VLANs: none Operational private-vlan: none Trunking VLANs Enabled: ALL Pruning VLANs Enabled: 2-1001 Capture Mode Disabled Capture VLANs Allowed: ALL Protected: false Appliance trust: none SŴ 2#

Рис. 9. Результати виконання команди show interfaces GigabitEthernet 0/1 switchport для комутатора SW 2

SW 1#show interfaces trunk Port Mode Encapsulation Status Native vlan Gig0/1 802.la on trunking 1 Vlans allowed on trunk Port Gig0/1 10,20,1000 Port Vlans allowed and active in management domain Gig0/1 10,20,1000

Port	Vlans	in	spanning	tree	forwarding	state	and	not	pruned
Gig0/1	10,20,	100	00		-				-
CTM7 1#									

SW_1#

Рис. 10. Результати виконання команди show interfaces trunk для комутатора ${\rm SW}~1$

SW 2#show	interfaces trun	k		
Port	Mode	Encapsulation	Status	Native vlan
Gig0/1	on	802.1q	trunking	1
Port	Vlans allowed c	n trunk		
Gig0/1	10,20,1000			
Port	Vlans allowed a	nd active in ma	anagement doma:	in
Gig0/1	10,20,1000			
Port	Vlans in spanni	ng tree forward	ding state and	not pruned
Gig0/1	10,20,1000			
SW 2#				

Рис. 11. Результати виконання команди show interfaces trunk для комутатора ${\rm SW}\ 2$

SW_1#show mac-address-table

	Mac Address Ta	ыле	
Vlan	Mac Address	Туре	Ports
10	0002.4a29.d119	DYNAMIC	Gig0/1
10	0004.9a34.9169	DYNAMIC	Fa0/2
10	0007.ec8c.41a8	DYNAMIC	Fa0/1
10	000c.cf07.cle7	DYNAMIC	Gig0/1
20	0002.4a29.d119	DYNAMIC	Gig0/1
20	000a.f360.0a3e	DYNAMIC	Fa0/11
20	00d0.ff55.dc66	DYNAMIC	Fa0/12
20	00e0.b0d8.d24a	DYNAMIC	Gig0/1
1000	0002.4a29.d119	DYNAMIC	Gig0/1
1000	000c.cfld.bd01	DYNAMIC	Gig0/1
1000	00d0.9742.2b84	DYNAMIC	Gig0/2
SW 1#			

Рис. 12. Результати виконання команди show mac-address-table для комутатора SW 1

SW_1#sh	ow mac-address-ta Mac Address Ta	ble ble	
Vlan 	Mac Address	Туре	Ports
10 10 20 20 20 1000 1000 SW 2#	0004.9a34.9169 0007.ec8c.41a8 000c.cf07.cle7 000a.f360.0a3e 00d0.ff55.dc66 00e0.b0d8.d24a 00d0.5846.2601 00d0.9742.2b84	DYNAMIC DYNAMIC DYNAMIC DYNAMIC DYNAMIC DYNAMIC DYNAMIC DYNAMIC	Gig0/1 Gig0/1 Fa0/1 Gig0/1 Gig0/1 Fa0/11 Gig0/1 Gig0/1

Рис. 13. Результати виконання команди show mac-address-table для комутатора SW 1

```
SW_1#show dtp
Global DTP information
Sending DTP Hello packets every 30 seconds
Dynamic Trunk timeout is 300 seconds
0 interfaces using DTP
SW_1#
```

```
Рис. 14. Результати виконання команди show dtp для комутатора SW 1
```

```
SW_2#show dtp
Global DTP information
Sending DTP Hello packets every 30 seconds
Dynamic Trunk timeout is 300 seconds
0 interfaces using DTP
SW_2#
```

Рис. 15. Результати виконання команди show dtp для комутатора SW_2

Завдання на лабораторну роботу

1. У середовищі програмного симулятора/емулятора створити проект мережі, яка складається із трьох комутаторів (рис. 16) та не менше ніж 12 робочих станцій, які будуть входити до трьох різних VLAN. Звернути увагу на те, що один із каналів (А чи В залежно від варіанту), які з'єднують комутатори між собою, є агрегованим каналом. Кількість його фізичних каналів наведена у табл. 6. До одного з комутаторів підключити робочу станцію керування адміністратора мережі. Для цієї станції передбачити окрему VLAN керування. При побудові звернути увагу на вибір моделей комутаторів, мережних модулів та адаптерів, а також мережних з'єднань. Для побудованої мережі заповнити описову таблицю, яка аналогічна табл. 3. У описовій таблиці зазначити належність робочих станцій до відповідних VLAN.

Рис. 16. Проект мережі

2. Розробити схему адресації пристроїв мережі Для цього скористатися даними табл. 7. Результати навести у вигляді таблиці, яка аналогічна табл. 4.

3. Налагодити та перевірити функціонування агрегованого каналу між відповідними комутаторами. Вибір методу/протоколу агрегування виконати довільно.

4. У побудованій мережі налагодити функціонування трьох VLAN користувачів та VLAN керування на основі групування портів та транкового протоколу 802.1q (номери та назви VLAN користувачів зазначені у табл. 8, параметри для налагодження транкових каналів зазначені у табл. 9). Налагодження транкового протоколу для агрегованого каналу проводиться аналогічно налагодженню для фізичного каналу (вибір каналу здійснюється командою interface portchannel).

5. Провести налагодження параметрів ІР-адресації пристроїв мережі відповідно до даних, які отримані у п. 2. Перевірити можливість інформаційного обміну між пристроями мережі, що належать як до однієї, так і до різних VLAN.

6. Налагодити можливість віддаленого доступу на базі протоколу Telnet/SSH до комутаторів мережі з робочої станції керування. Перевірити можливість здійснення віддаленого доступу.

7. Дослідити особливості передачі трафіка та отримання службової та діагностичної інформації про налагоджені VLAN за допомогою відповідних команд.

8. Налагодити використання механізму пріоритетів при передачі даних всіх VLAN через транкові канали (табл. 9). Для VLAN керування встановити максимальний пріоритет.

9. Дослідити особливості передачі трафіка та отримання службової та діагностичної інформації після змін п. 7 за допомогою відповідних команд.

10. Налагодити використання Native VLAN при передачі даних через транкові канали (табл. 9).

11. Дослідити особливості передачі трафіка та отримання службової та діагностичної інформації після змін п. 9 за допомогою відповідних команд.

Таблиця 6

№ варіанта	Кіль	кість	Mo	Кіль	кість	Mo	Кількість	
	фізичних каналів		JN <u>⊍</u> Domioutro	фізичних каналів			фізичних каналів	
	канал А	канал В	варіанта	канал А	канал В	варіанта	канал А	канал В
1	1	2	11	3	1	21	1	4
2	1	3	12	4	1	22	2	1
3	1	4	13	1	2	23	3	1
4	2	1	14	1	3	24	4	1
5	3	1	15	1	4	25	1	2
6	4	1	16	2	1	26	1	3
7	1	2	17	3	1	27	1	4
8	1	3	18	4	1	28	2	1

Дані для налагодження каналів

9	1	4	19	1	2	29	3	1
10	2	1	20	1	3	30	4	1

Таблиця 7

N⁰	IP-адреса	Πrahima	N₂	IP-адреса	Πachina	
варіанта	мережі	префікс	варіанта	мережі	префікс	
1	191.G.N.0	/24	16	206.G.N.0	/24	
2	192.G.N.0	/25	17	207.G.N.0	/25	
3	193.G.N.0	/26	18	208.G.N.0	/26	
4	194.G.N.0	/27	19	209.G.N.0	/27	
5	195.G.N.0	/28	20	210.G.N.0	/28	
6	196.G.N.0	/24	21	211.G.N.0	/24	
7	197.G.N.0	/25	22	212.G.N.0	/25	
8	198.G.N.0	/26	23	213.G.N.0	/26	
9	199.G.N.0	/27	24	214.G.N.0	/27	
10	200.G.N.0	/28	25	215.G.N.0	/28	
11	201.G.N.0	/24	26	216.G.N.0	/24	
12	202.G.N.0	/25	27	217.G.N.0	/25	
13	203.G.N.0	/26	28	218.G.N.0	/26	
14	204.G.N.0	/27	29	219.G.N.0	/27	
15	205.G.N.0	/28	30	220.G.N.0	/28	

Параметри ІР-адресації мережі

Таблиця 8

Дані для створення VLAN

N⁰	Н	lомер VLA	N	N⁰	H	lомер VLA	N
варіанта	LAN-A	LAN-B	LAN-C	варіанта	LAN-A	LAN-B	LAN-C
1	11	12	13	16	161	162	163
2	21	22	23	17	171	172	173
3	31	32	33	18	181	182	183
4	41	42	43	19	191	192	193
5	51	52	53	20	201	202	203
6	61	62	63	21	211	212	213
7	71	72	73	22	221	222	223
8	81	82	83	23	231	232	233
9	91	92	93	24	241	242	243
10	101	102	103	25	251	252	253
11	111	112	113	26	261	262	263
12	121	122	123	27	271	272	273
13	131	132	133	28	281	282	283
14	141	142	143	29	291	292	293
15	151	152	153	30	301	302	303

Таблиця 9

Дані для налагодження транкових каналів, пріоритетів, Native VLAN

No Bapia-	Налаго	Пріоритет VLAN			Native			
нта	Кан	ал А	Кан	Канал В		LAN-B	LAN-C	VLAN
1.	on	on	desirable	auto	-	2	4	LAN-A
2.	on	auto	desirable	desirable	1	_	3	LAN-B
3.	on	desirable	desirable	on	2	6	_	LAN-C
4.	auto	on	auto	desirable	-	1	5	LAN-A
5.	auto	desirable	auto	on	4	-	2	LAN-B
6.	desirable	on	on	desirable	1	7	-	LAN-C
7.	desirable	desirable	on	auto	-	4	6	LAN-A
8.	desirable	auto	on	on	3	-	1	LAN-B
9.	desirable	auto	on	on	6	2	—	LAN-C
10.	desirable	desirable	on	auto	-	3	5	LAN-A
11.	desirable	on	on	desirable	6		4	LAN-B
12.	auto	desirable	auto	on	3	6	—	LAN-C
13.	auto	on	auto	desirable	-	6	4	LAN-A
14.	on	desirable	desirable	on	5	-	1	LAN-B
15.	on	auto	desirable	desirable	6	2	—	LAN-C
16.	on	on	desirable	auto	-	5	3	LAN-A
17.	auto	desirable	auto	on	4	-	6	LAN-B
18.	desirable	on	on	desirable	5	6	—	LAN-C
19.	desirable	desirable	on	auto	-	4	2	LAN-A
20.	desirable	auto	on	on	6	-	1	LAN-B
21.	on	on	desirable	auto	2	6	—	LAN-C
22.	on	auto	desirable	desirable	—	6	3	LAN-A
23.	on	desirable	desirable	on	2	-	4	LAN-B
24.	auto	on	auto	desirable	7	5	—	LAN-C
25.	desirable	auto	on	on	-	3	6	LAN-A
26.	desirable	desirable	on	auto	6	-	3	LAN-B
27.	desirable	on	on	desirable	4	6	_	LAN-C
28.	auto	desirable	auto	on	_	6	4	LAN-A
29.	desirable	on	on	desirable	2	_	6	LAN-B
30.	auto	desirable	auto	on	6	2	-	LAN-C

Контрольні питання

1. Поняття лінії доступу (порту доступу) у VLAN.

2. Поняття транкового каналу (транкового порту) у VLAN.

3. Поняття транкового протоколу. Приклади транкових протоколів.

4. Особливості побудови VLAN на основі групування портів та транкових протоколів.

5. Стандарт Cisco ISL. Переваги та недоліки.

- 6. Стандарт IEEE 802.1Q. Переваги та недоліки.
- 7. Структура тегованого кадру IEEE 802.1Q. Призначення полів тегу.
- 8. Поняття Native VLAN.
- 9. Особливості застосування Native VLAN на комутаторах Cisco.

10. Протокол DTP. Призначення та особливості застосування.

11. Рекомендації з підвищення рівня захищеності VLAN.

12. Основні команди налагодження роботи VLAN на основі групування портів та транкових протоколів на базі комутатора Cisco.

13. Основні команди діагностики роботи VLAN на основі групування портів та транкових протоколів на базі комутатора Cisco.

14. Основні команди налагодження роботи протоколу DTP на комутаторі Cisco.

15. Основні команди діагностики роботи DTP на комутаторі Cisco.