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Introduction 
 
In the field of robotics, the importance of mobile robots is steadily increasing. Due to their 
freedom of movement, mobile robots are more flexible and can perform more tasks than their 
conventional fixed counterparts. 
 
Current applications [1] of mobile robots are broad and include domestic and public cleaning, 
transport of goods in hospitals, factories, ports and warehouses, exploration of inhospitable 
terrains such as space or oceans, mining, defusing explosives, entertainment and performing 
inspections and security patrols. 
 
A special class of mobile robots are omnidirectional robots. These robots are designed for 2D 
planar motion and are capable of translation (x,y) and rotation around their center of gravity 
(θ) : three degrees of freedom (3 DOF). Unlike conventional vehicles, omnidirectional robots 
can control each of their DOFs independently. 
 
In order to operate effectively, mobile robots should be able to keep track of their current 
position (localization), sense their surroundings (perception), be able to generate a path to 
their destination (path planning) and execute it (navigation) in an efficient manner. To a large 
extend, this is accomplished through sensing and smart algorithms. 
 
To develop, implement and test new algorithms and sensing techniques, an omnidirectional 
mobile platform was built at the National University of Singapore (NUS). This test bed was 
designed to be very flexible, easy to program and to use commodity hardware. However, 
apart from the assembled hardware, the robot was not yet ready to be used because of a 
fixed power and programming interface and the lack of motion control. 
 
In this project, the following goals have been set: 
 

• Implement planar motion control algorithms and analyze performance in time domain. 

• Adapt the robot for wireless control. 
 
This report will start with an explanation of the concept and advantages of omnidirectional 
mobility. Then, a brief introduction to the omnidirectional mobile platform will be given. 
Thereafter, the robot kinematics are analyzed and a motion control design is developed. 
Experiments will be performed and results presented. Finally, a number of non-linear, 
performance-limiting effects will be discussed along with possible resolution strategies. 
 
This is the final report of the traineeship project "Motion control of an omnidirectional mobile 
robot". The 12 weeks traineeship was conducted at the Control and Mechatronics Laboratory 
of the Mechanical Engineering department at the National University of Singapore. It was 
supervised by Dr. M. H. Ang Jr. of NUS and Prof. dr. ir. M. Steinbuch of TU/e. 
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Chapter 1: Omnidirectional mobility 
 
In the introduction of this report, it was mentioned that the mobile robot, of which the 
movements are to be controlled, is capable of omnidirectional mobility. To gain a better 
understanding of this concept, it will now be discussed. 
 
Robotic vehicles are often designed for planar motion. Some examples include floor cleaning 
or transport of goods in warehouses. In such a two-dimensional (2D) space, a body has three 
degrees-of-freedom (3 DOF). It can translate along the x and y axes and it can rotate around 
its center-of-gravity, the θ axis (see figure 1). 
 

 

Figure 1: 3 DOF: x, y, θ 

 
Most vehicles are not capable of controlling these three degrees-of-freedom independently, 
because of so called non-holonomic constraints. As example, consider a road where several 
cars are parked along the side of the road. If a driver wants to park his normal passenger car 
in an open space between two cars, he can’t simply move sideways. The driver often has to 
drive forward and backward several times to make enough of an angle to insert his car into 
the free spot and to get a final orientation that is satisfactory (see figure 2). This it due to the 
inability of a car using skid-steering to move perpendicular to its drive direction: a non-
holonomic constraint. While generally such a vehicle can reach every location and orientation 
in a 2D space, it may require complicated maneuvers and complex path planning to do so, 
regardless of whether it is a human or robot-controlled vehicle. 
 
By contrast, a vehicle that is not hampered by these constraints is capable of omnidirectional 
mobility. It can travel in any direction under any orientation. In many cases where mobile 
robots are put into action, especially in confined or congested spaces, omnidirectional mobility 
is highly advantageous. It decreases control system complexity and enables faster and more 
accurate movement. 
 

 

Figure 2: Moving from A to B: skid-steering (left) and omnidirectional movement (right) 
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Chapter 2: The omnidirectional mobile platform 
 
In this chapter, the omnidirectional mobile platform or robot will be described in more detail.  
 
2.1: Purpose and usage 
 
As mentioned in the introduction of this report, the purpose of the robot is to function as a 
flexible test bed primarily for the development, implementation and testing of localization, 
trajectory planning and tracking algorithms. 
 
These high-level algorithms are normally written in the C programming language.  
The researcher would implement his or her algorithms on the robot’s onboard computer, 
perform experiments and validate performance, preferably from a control station without 
having to physically touch the robot. A joystick at the control station could be used for basic 
guidance. 
 
To this end, the robot has to be modified and a control station must be set up. The robot’s 
original design and any modifications will be described in the next paragraph. 
 
High-level algorithms are not enough to set the omnidirectional platform in motion. In order to 
function properly, the robot also needs a library of low-level algorithms that can send motion 
control signals to the motors, poll sensors and provide other important functionality. In the 
following chapters, these control algorithms will be addressed. 
 
2.2: Robot subsystems 
 
The robot was designed for human environments and this is reflected in the design, most 
notably its dimensions and dynamics. It consists of three major parts: a frame, drivetrain and 
electronics. A fourth part that plays a vital role is the control station and software. Below, all 
parts will be briefly discussed. For detailed information on the robot’s design, see Rob van 
Haendel’s report [2]. Photographs of the robot are shown in figure 3. 
 

 

Figure 3: Photographs of the robot: side-view (left) and top-view (right) 

 
2.2.1: Frame 
 
In figure 4, a schematic overview of the robot is presented. The brown section in the overview 
is the lightweight aluminium frame. The purpose of the frame is to provide a stiff support for all 
the robot’s components, to provide space for the research payload and to protect the delicate 
systems onboard, such as the electronics and wheels, from damage during possible collisions 
with objects.  
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The total mass of the frame is 1.4 kg whereas the mass of the fully equipped robot at present 
is 3.6 kg. It can carry a research payload of 5 kg on top of the base. The frame has the shape 
of a truncated equilateral triangle with long edges measuring 310 mm and the short ones  
110 mm. The robot’s footprint fits in a rectangle with length 420 mm and width 364 mm.  
The height depends on the payload, but normally does not exceed 350 mm to be able to 
move freely in a laboratory environment and under tables and workbenches. 
 

 

Figure 4: Schematic overview of robot 

 
 
2.2.2: Drivetrain 
 
The grey parts in the schematic overview are the omnidirectional wheels which provide 
omnidirectional mobility. In figure 5, a close-up of such a wheel is shown. The commercially 
available Omniwheel has six passive rollers on the periphery of the wheel, a trio on each side. 
The shafts of the rollers are perpendicular to the shaft of the wheel. An omniwheel is driven in 
a normal fashion, while the rollers allow for a free motion in the perpendicular direction 
(sideways). 
 

 

Figure 5: Omniwheel 

 
In the frame, three 40 mm radius omniwheels are mounted at 120° intervals along the robot’s 
center-of-gravity to create a statically determined structure. Due to this arrangement, the 
wheels are always in contact with the floor regardless of its roughness. 
 
Each wheel is driven by a DC micromotor, Faulhaber series 2642 012 CR, depicted with a 
blue color in the schematic. The motor’s maximum rotational velocity is 6000 rpm. The DC 
motors convert input currents to torques. 
 
A Faulhaber 26/1 gearbox with 14:1 reduction ratio is mounted between wheel and motor 
shaft to increase the torque and decrease the maximum rotational velocity at the wheels to 
acceptable levels. The robot was designed for good mobility in a human environment: a top 
speed of 1 m/s, acceleration of 1 m/s

2
, rotational velocity of 1 rad/s and rotational acceleration  

of 1 rad/s
2
. Although these values have not been explicitly investigated, it was shown that the 

robot is able to easily surpass these values, depending on payload conditions. 
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In order to sense the rotary position of the wheels each electromotor is outfitted with a 
Faulhaber HEDM 5500B optical quadrature encoder with 1000 lines/revolution. 
 
Each encoder sports two output channels which are phase-shifted 90° from each other. 
Hence, direction of motion can be detected. 
 
The frequency of the encoder signal will be between 0 and 100 kHz: 
Frequency encoder signal: 6000 rpm / 60 (s/min) x 1000 lines/revolution = 100 kHz. 
 
2.2.3: Electronics 
 
Electronics provide the means to control the motors, enable the use of sensors, process data 
and provide power to all electrical components of the robot. In figure 6, a schematic of the 
electronics is shown. All components will be detailed below. 
 

 

Figure 6: Schematic overview of the electronics. Arrows denote direction of signals. 

 
PC/104 embedded computer bus: 
The heart of the robot is a PC/104 embedded computer bus. In the field of robotics, the 
PC/104 is an industrial standard. The major advantage of this component is that it packs 
personal computer performance in a compact form that is flexible and easily extendible. 
Moreover, the device’s power consumption is low and it is easily programmable. The PC/104 
serves as the central processing unit of the mobile robot. 
 
The installed PC/104 is a Kontron MOPSlcdGX1 module and measures 91 mm by 97 mm. It 
is outfitted with an AMD Geode GX1 processor running at 300 MHz, a 10/100 Mbit Ethernet 
adapter, onboard Compact Flash, two USB ports, two serial ports, VGA graphics engine, 
mouse and keyboard connections. At present, a 30 GB hard disk is connected to the PC/104. 
 
I/O card: 
In order to receive information from the encoders and to send signals to the motors, the 
PC/104’s microprocessor needs an Input/Output (I/O) card. A PC104-DIO48 I/O card is 
installed on the robot, featuring 48 digital channels. 
 
Encoder counter: 
In order to read the signals from the encoders properly, a high sampling frequency is 
required. According to the Nyquist-Shannon sampling theorem, the sampling frequency must 
be greater than twice the bandwidth of the input signal in order to be able to reconstruct the 
signal correctly. In mathematical terms: 
 
Fs > 2BW         (2.1) 
 
Here Fs is the sampling frequency and BW is the bandwidth of the input signal. 
To follow this theorem, the six encoder channels (2 for each encoder) have to be sampled at 
200 kHz each. In practice, one normally uses a sampling frequency that is ten times the 
bandwidth. In this case, that would mean 1 MHz.  
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Sampling and processing/decoding encoder signals at such a frequency would require a 
reasonable amount of computing power and slow down other processes in the central 
processing unit. Hence, a hardware solution is necessary in the form of a quadrature decoder 
circuit. Such a circuit takes encoder signal processing off the hands of the central processing 
unit.  
 
Every encoder is outfitted with such a circuit consisting of a dedicated HCTL2020 encoder 
counter and a LM555 timer to generate clock pulses. This setup is expected to work at 1,4 
MHz and thus fits the requirements. Another advantage of a quadrature decoder circuit is that 
the resolution of the encoder signals is multiplied by four when it is used for motion sensing. If 
we take this circuit and the gearbox into account, the nominal encoder resolution will then be 
equal to: 
 
Nominal encoder resolution: 1000 lines/revolution x 4 x 14:1 = 56000 lines/revolution. 
 
From experiments, it is known that this resolution does not exactly correspond with reality, 
therefore a real encoder resolution of 55184 lines/revolution is used. One line thus 
corresponds with 2π/55184 = 1.139·10

-4
 rad. See appendix 1 for more information. 

 
H-Bridge: 
The robot’s motors will be controlled by the PC/104 microprocessor. Or in other words, the 
motion control feedback loop will be closed in the central processing unit. This unit however is 
not able to send out high voltages and currents to deliver power to the three motors. 
Therefore, a flexible and low-level amplifier circuit is incorporated in the robot’s electronics: a 
so-called H-Bridge (LM18200). 
 
The H-Bridge consists of four electronic switches enabling forward and backward drive of the 
motor and braking. The bridge has three inputs: DIR for drive direction, BRAKE for braking 
and PWM for speed/duty cycle. This last input will be detailed in the next section. 
 
PWM generator board: 
The H-Bridge requires a PWM input signal to operate. This signal is a simple 0 to 5 V digital 
signal. The standard DIO I/O card by itself, however, is not able to produce such a signal. 
Therefore, a dedicated PWM generator board is included in the electronics. 
 
 

 

Figure 7: Pulse Width Modulation: continuous source signal (green), signal used to 
calculate PWM signal: sawtooth (blue), PWM signal (magenta). 

 
PWM or sign/magnitude Pulse Width Modulation is a technique wherein the duty cycle (or 
number of pulses per unit time) of a signal is modulated to adjust the amount of power that is 
sent to the motors. The PWM signal is a square wave with just two voltage values that 
correspond with zero speed and maximum speed (see figure 7, obtained from [3]).  
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The technique consists of approximating a desired continuous signal by switching between 
the two voltage values (in essence switching the motors on and off), so that the resulting 
average value of the PWM signal matches the desired continuous value (speed). 
 
Power supply: 
At present, the robot is powered by two voltage sources; one providing 5 V for the electronics 
and the other providing 12 V for the motors. In the future, the robot will be driven entirely by 
batteries as this enables full independent movement. A set of batteries and electronics have 
been ordered. However, due to delivery delays, it was not possible to make the robot’s power 
supply independent during the project described in this report. 
 
The ordered batteries were a set of Polyquest PQ-B2600 HG 4S Lithium-polymer batteries 
(14.8 V). These four-cell batteries have a capacity of 2600 mAh and are able to discharge at a 
maximum continuous current of 20 A. Each battery pack only weighs 220 grams and has an 
exceptional energy density. 
 
During modification experiments, it was discovered that the combination of PC/104 embedded 
computer and other electronics needs at least 5.3 V and 2.5 A to boot up and function 
properly, even without a pocket router connected (see next paragraph). This is not a standard 
voltage. Moreover, normal voltage regulators and diode circuits are not able to supply this 
voltage without excessive heat generation. A solution was found in the form of a ST 
Microelectronics GS-R400V switching regulator with programmable output voltage, which is 
able to provide the 5.3 V. An additional regulator can be used to reduce 14.8 V to 12 V for the 
motors. 
 
2.2.4: Control station and software 
 
One of the objectives of the project described in this report is to enable wireless control of the 
robot from a control station. This was achieved through installing dedicated hardware and 
software on the robot and setting up a control station. The control station (see figure 8) 
consists of a desktop computer running Windows XP, a Logitech Freedom 2.4 cordless 
joystick and a D-Link DWL-G122B1 Wireless USB Adaptor. 
 

 

Figure 8: Control station and power supply (left) and robot (front right) 

 
The robot currently runs Red Hat Linux 9 Kernel 2.4.20 with Real-Time Application Interface 
(RTAI) installed. The robot is outfitted with a D-Link DWL-G730AP Wireless Pocket 
Router/Access Point. 
 
Communications use the SSH Secure Shell protocol and through a client program on the 
desktop computer commands can be executed on the robot. A schematic of this arrangement 
is shown in figure 9. 
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Figure 9: Schematic overview of wireless communication 

 
All real-time control algorithms were implemented in the C programming language, which is 
ideal for this application due to its versatility, possibility of low-level bit and byte programming 
and high execution speed. The GCC compiler of the robot was used to generate stand-alone 
programs. 
 
As mentioned before, a wireless joystick was added to the control station. At the time of 
writing, the robot’s movements could not be controlled in real-time with the joystick. However, 
the library with control algorithms was specifically written to make a future implementation of 
steering with a joystick easier. It certainly is an end goal of the omnidirectional robot 
development program to be able to control the robot through a wireless joystick. 
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Chapter 3: Kinematics 
 
Now that a basic understanding of the omnidirectional robot has been developed, we can 
investigate the vehicle’s kinematics. If we want to prescribe the robot’s movements in the 
environment, we need to know how these variables relate to the primary variables we can 
control: the angular positions and velocities of the wheel shafts. Therefore, a kinematical 
model of the robot has to be developed. 
 

 

Figure 10: Kinematic diagram of the robot 

 
In Rob van Haendel’s report [2], the kinematic relations of the omnidirectional robot have 
been presented for the first time. This derivation will be presented and expanded upon below. 
 
Let’s start with defining a global frame [x, y] which represents the environment of the robot, 
see figure 10. The robot’s location and orientation in this global frame can be represented as 

(x, y, θ). The global velocity of the robot can be written as ),,( θ&&& yx . 

 
Now we can also define a local frame [xL, yL] that is attached to the robot itself. The center of 
this local frame coincides with the center of gravity of the robot. The three omniwheels are 
located at an angle αi (i = 1, 2, 3) relative to the local frame. If we take the local axis xL as 
starting point and count degrees in the clockwise direction as positive, we have α1 = 0°,  
α2 = 120° and α3 = 240°.  
 
From the figure, it is obvious that the elements that connect the environment with the robot 
are the wheel hubs and are thus a good starting point for a kinematic relation.  
 
The translational velocities of the wheels vi on the floor determine the global velocity of the 

robot in the environment ),,( θ&&& yx  and vice versa. The translational velocity of wheel hub vi 

can be divided into a part due to pure translation of the robot and a part due to pure rotation 
of the robot: 
 

rotitransi vvv +=
,

        (3.1) 
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First, pure translation will be considered. In figure 11, a close-up of vtrans,1, the translational 

velocity at wheel hub 1, is shown. We can map the unit vector vtrans,1 onto the vectors x&  

and y& to obtain (3.2). 

y&

x&

1,transv

θ

 

Figure 11: Close-up of translational velocity at wheel hub 1 

 

yxvtrans
&& )cos()sin(1, θθ +−=        (3.2) 

 
We can generalize this vector mapping for all wheels when we take into consideration that the 
vectors vi are positioned at an offset θ+αi . Therefore, we can write: 
 

yaxav iiitrans
&& )cos()sin(

,
+++−= θθ       (3.3) 

 
When the platform executes a pure rotation, the hub speed vi needs to satisfy the following 
equation: 
 

θ&Rvrot =           (3.4) 

 
Here R is the distance from the center of gravity of the robot to the wheels along a radial path. 
The value of R is 0.171 m. 
 
When we substitute both influences in (3.1), we end up with the following: 
 

θαθαθ &&& Ryxv iii ++++−= )cos()sin(      (3.5) 

 
We have now coupled the translational velocity of the wheels to the global velocities of the 
omnidirectional platform, but we can go a step further. The translational velocity of the hub is 

related to the angular velocity 
iφ& of the wheels through: 

ii rv φ&=          (3.6) 

 
where r is the radius of an omnidirectional wheel: 0.04m. 
 
Thus we can substitute (3.6) in (3.5) and after rearranging this results in: 
 

))cos()sin((
1

θαθαθφ &&&& Ryx
r

iii ++++−=      (3.7) 

 
We can transform (3.7) to matrix representation (3.8) and (3.9): 
 

uJ inv
&& =φ          (3.8) 

 
 
In this relation, Jinv is the inverse Jacobian for the omnidirectional robot that provides a direct 

relationship between the angular velocities of the wheels φ&  and the global velocity vector u& .  
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In most cases, it is not convenient for users to steer a robot in global coordinates however. It 
is far more natural to think and steer in local coordinates. Fortunately, we can now simply 
convert global to local coordinates with the following equation: 
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Substituting equation (3.10) in (3.9) leads to: 
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This matrix relation in the local frame can also be expanded to three separate equations for 
easy implementation in programming applications: 
 

rRyx

rRyx
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/))cos()cos()cos()sin((
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++−=

  (3.12) 
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Chapter 4: Control laws 
 
When we start using the omnidirectional robot, we have an idea about the kind of movement 
we want the robot to perform in the environment: the desired or reference motion. With the 
kinematic relationships from the previous chapter, specifically equation (3.11), it is always 
possible to convert this reference motion in the environment to a reference motion for the 

robot’s three wheel shafts: (
1,refφ& ,

2,refφ& , 
3,refφ& ) and through integration: (

1,refφ ,
2,refφ ,

3,refφ ).  

This topic will be further elaborated in the next chapter. 
 
In general it is hard to perfectly follow such a reference path, because of the effects of friction 
and other disturbances on the system. To minimize these effects, a feedback control system 
will be designed. 
 

For control, we have the angular positions (
1φ ,

2φ , 
3

φ ) and the velocities of the wheel shafts 

( 1φ& , 2φ& , 
3

φ& ) at our disposal by changing the voltage to be sent by the PC/104 to the PWM 

generator board. We can use the first set for a position controller and the second set for a 
velocity controller. In order to be able to compare performance, both types of controllers will 
be implemented. 
 
4.1: Position and velocity control 
 
In position control, the control action is computed based on the difference between the real 
angular positions and the reference positions. This can be expressed in a mathematical 
sense as: 
 

φφ −= refe          (4.1) 

 

Here e is the tracking error [rad], refφ is the reference angular position [rad] and φ is the real 

angular position [rad]. 
 
For the case of the omnidirectional robot, equation (4.1) has to be expanded to take into 
account the fact that the robot has three wheels and consequently three errors:   
 

iirefie φφ −= ,          (4.2) 

 
Here the subscript i (= 1,2,3) denotes which wheel is considered. 
 
Another solution is to use velocity control. Here, the tracking error is defined based on the real 
angular velocities [rad/s] and reference velocities [rad/s]: 
 

φφ && −= refe          (4.3) 

 
Or for our multi-wheel case: 
 

iirefie φφ && −=
,          (4.4) 

 
A schematic diagram of a feedback control system is presented in figure 12.  

Here, r(t) represents the group of reference signals, so either ( 1,refφ , 2,refφ , 3,refφ ) or 

( 1,refφ& , 2,refφ& , 3,refφ& ) depending on the type of controller. The tracking errors are represented 

by e(t). The feedback controller is C(t) and u(t) represents the control inputs/actions 
calculated. 
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Figure 12: Feedback control system 

 
The disturbances are collected in the variable w(t) and P(t) represents the system. The output 

signals are either (
1φ ,

2φ , 
3

φ ) for a position controller or (
1φ& ,

2φ& , 
3

φ& ) for a velocity controller. 

 
In the figure it is assumed that the optical encoders have an unity gain for their operating 
spectrum in this application which, according to their specifications, is a valid assumption. 
 
Several basic controllers will be implemented based on proportional, integral and derivative 
feedback: P, PI, PID and PD. 
 
4.2: Discrete implementation 
 
The omnidirectional robot is a digital system. It samples signals from the optical encoders and 
uses a microprocessor to close the motion control loop. Unlike analogue electronics which 
operate in the continuous domain, a digital system operates in the discrete domain. 
This implies that any implementation of a control law should also be made in discrete form.  
 
Because of this, and the related fact that digital systems cannot perform pure integration and 
differentiation, the continuous motion control laws should be approximated with difference 
equations. In the following table, the continuous P, PI, PID and PD control laws are shown  
side by side with their discrete counterparts.  
 

Table 1: Control law implementations 

Type Continuous form Discrete form 

P )()( teKtu p=  kpk eKu =  

PI 

∫+=

t

ip dtteKteKtu
0

)()()(  ∑
=

∆+=
k

j

jikpk eTKeKu
1

 

PID 

)()()()(

0

teKdtteKteKtu d

t

ip
&++= ∫  )( 1

1

−

=

−
∆

+∆+= ∑ kk

d
k

j

jikpk ee
T

K
eTKeKu  

PD )()()( teKteKtu dp
&+=  

)(
1−−

∆
+= kk

d

kpk ee
T

K
eKu  

 
Here Kp is the proportional gain [-], Ki is the integral gain [-] and Kd is the derivative gain [-], 

u(t) is the control signal [-] and T∆  is the sampling period [s]. The index k denotes the 
current discrete time instant, k-1 is the previous time instant. 
 
In the discrete case, the derivative term is based on a first-order approximation of continuous 
differentiation, also called Euler’s method [4]. The integral term is based on the right 
approximation of the rectangle method in integral calculus [5]. 
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4.3: Performance indicators 
 
In the introduction of this report, it was mentioned that the performance in time domain is 
important. Therefore, frequency domain performance will not be considered in the following 
chapters. 
 
The main indicators of performance that will be considered are the steady state error, the 
overshoot, the settling time and rise time (see figure 13). The values of these indicators will 
be obtained from step response data. 
 

 

Figure 13:  Time-domain performance indicators 

 
The final value is defined as the value of the step response at the end of an experiment. 
 
The steady state error is defined as difference between the final value and the desired 
value. 
 
The overshoot Mp is the maximum amount the system overshoots its final value divided by 
its final value. The use of the final value is especially relevant for situations where the 
response exhibits an overshoot, but does not reach the setpoint. 
 
The settling time ts is the time it takes for the system transients to decay. Here, the 4% 
settling time is used. It is defined as the time interval from the moment when the step input is 
given until the moment when the step response falls into the 4% range surrounding the final 
value of the response. 
 
Finally, the rise time tr is the time the system needs to reach the vicinity of the final value. 
Here, it is defined as the time interval between the moments the response reaches 10% and 
90% of the final value. 
 
4.4: All-round and precise controller 
 
In control, we know that some performance indicators can conflict. For example, when we 
want to reduce the steady state error, an increase of the integral gain Ki can be considered. 
However, this can lead to a higher overshoot, which might be undesirable. From this example 
it becomes obvious that often a trade-off is required between performance indicators. 
 
To learn more about the capabilities of the robot, all controllers will be tuned twice. Once 
based on one set of requirements and once on another set (see table 2). The first set is called 
all-round. In this set, all four performance indicators are considered equally important. 
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The absolute value of the steady state error should be below 1° (≈ 0.017 rad) for position 
control or 1 rpm (≈ 0.105 rad/s) for velocity control within 0.25 s while the overshoot and rise 
time should remain reasonable.  
 
The second set is called precise and focuses solely on a minimum absolute value of the 
steady state error. Other performance indicators are not considered important. 
 

Table 2: Requirements for all-round and precise controller 

Performance indicator All-round controller 
requirement 

Precise controller 
requirement 

Absolute steady state error 
position: 
velocity: 

 
< 1° 
< 1 rpm 

 
<< 1° 
<< 1 rpm 

Overshoot < 5% Not important 
Settling time < 0.25 s Not important 
Rise time < 0.1 s Not important 

 
These two different sets will give insight into the possibilities in regards to performance. 
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Chapter 5: Trajectory profiles 
 
To test the control laws’ performance, a way to specify desired movement must be found. 
Since it is not possible yet to do this with a joystick (see paragraph 2.2.4), an alternative 
method has to be developed.  
 
This new method should satisfy a number of requirements: 

• Formulating desired movement should be fast and easy. 

• It should be possible to emulate the use of a joystick. 

• Future adaptation of the C implementation to include use of a real joystick should be 
straightforward. 

 
A method that meets these requirements was developed. The user can specify desired 
movement with a trajectory profile: a position or velocity reference as function of time.  
The desired movement of the robot can be provided in one of the following ways: 

• Position of the robot in local frame: θ,, LL yx . This profile is abbreviated as posref. 

• Velocity of the robot in local frame: θθ ,,, &&&
LL yx . This profile is abbreviated as velref. 

Note that θ&  andθ  are related to each other through integration. 

• Angular velocities of the wheel shafts: 
321

,, refrefref φφφ &&& . This profile is abbreviated as 

wheelref. 
 
The profile is supplied to the robot in the form of a data file. In this file, the reference during 
one sample period is saved on one line. Thus, the file is essentially a side-by-side group of 
three or four arrays with each array representing the evolution of one coordinate. The length 
of the arrays is determined by the number of samples: 
 

LFN ss ⋅=          (5.1) 

 
Here Ns is the number of samples [-], Fs is the sampling frequency [Hz] and L is the length of 
the experiment [s].  
 
For a quick example, consider a velocity profile (velref) that shows an acceleration in yL with a 
sampling frequency of 200 Hz: 
 

              XLdot - YLdot - Thetadot - Theta 

t = 0.000 s:  0       0       0          0 

t = 0.005 s:  0       0.1     0          0 

t = 0.010 s:  0       0.2     0          0 

... 

 
Note that in the data file, no legend and time tags are included. These are simply added here 
for better readability. 
 
At the start of an experiment, the robot’s software will load the profile and calculate the 
required motion of the wheel shafts: the reference. This process is shown in figure 14.  
The controller uses either angular reference positions (in case of a position control) or angular 
reference velocities (in case of velocity control) of the wheels. Apart from angular wheel 
velocities, profiles however can also be formulated in local frame positions and velocities.  
Thus, to calculate the reference, a number of conversions are build into the trajectory profile 
processing. 
 
The trajectory profile implementation uses a combination of numerical differentiation/ 

integration and kinematic relations to convert profile data to iref ,φ  and iref ,
φ& . 



 17 

 

Figure 14: Schematic overview of the trajectory profile concept. The blue arrows are 
associated with position control, the red arrows with velocity control. 

 
For differentiation, the following formula is used: 
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For integration, a formula based on the trapezoidal rule, is used: 
 

])1[][(
2

]1[][ −+
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+−= ii
T

ii refrefrefref φφφφ &&      (5.3) 

 
In the equations above, the index [i] refers to the current sampling period, whereas [i-1] refers 
to the sampling period before the current one, with a difference of ∆T in between. The 
advantage of both equations is that they are fast to compute and reasonably accurate, 
particularly for profiles that are not smooth, such as step inputs. 
 
Once the entire profile is converted to references for angular positions and velocities of the 
wheel shafts, these references are saved to memory. During the experiment, at every new 
sampling period, the controller has access to the reference at that specific time instant and 
can use it to calculate the tracking error and ultimately the control action. 
 
Let’s take a look at some examples of trajectory profiles. In figure 15, a simple posref profile is 
presented with a step in the xL coordinate. Figure 16 shows a velref profile that consists of 
three parts. In the first part, the robot moves in the positive xL direction with a constant 
velocity. Thereafter, a rotation around the center-of-gravity is performed with constant 
rotational velocity. In the last part, the robot is at rest. A wheelref profile is displayed in figure 
17. Here, the first wheel accelerates to a speed of 40 rad/s (not far below the limit angular 
velocity) and then decelerates. When the first wheel comes to a stop, the second wheel 
mimics the movement. The third wheel does not move during the entire experiment. 
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Figure 15: Example of a posref profile. Fs = 200 Hz. 
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Figure 16: Example of a velref profile. Fs = 200 Hz. 
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Figure 17: Example of a wheelref profile. Fs = 200 Hz. 

 
Trajectory profiles provide maximum flexibility for the user and are easy to produce. In this 
project, Matlab scripts were used to generate them, but any mathematical package with the 
ability to write arrays to disk is usable. 
 
When creating trajectory profiles, the designer should keep the system’s capabilities in mind. 
The maximum angular velocity the motors and gearbox can provide is 45 rad/s or 430 rpm or 
1.8 m/s. The angular acceleration is also limited. If the user’s request exceeds the robot’s 
capabilities, the best possible performance is given. 
 
Earlier in this chapter, it was mentioned that it would be good to emulate the use of a joystick. 
The most intuitive way to control a vehicle with a joystick is to use it in speed mode. In this 
mode, the vehicle’s speed is proportional to the amount of perturbation of the joystick from its 
center position. The vehicle is at rest when the stick is centered and unperturbed. From the 
above it should be obvious that a velref profile can be used to emulate a joystick in speed 
mode. When one would like to use a joystick in position mode, one could use a posref profile. 
 
For use with a real joystick, the C implementation should be changed somewhat. The control 
station could send a single data packet every sampling period, for instance using a TCP/IP 
connection, with a desired movement (most likely a velocity reference in local frame) based 
on the joystick’s perturbation.  This desired movement should then be read and 

instantaneously converted into iref ,φ  and iref ,
φ&  during the same sampling period, if possible. 

The exact implementation falls outside the scope of this report. 
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Chapter 6: Implementation in C 
 
Aside from hardware, the omnidirectional robot needs software to function. This software was 
written in the programming language C and fulfils a dual purpose: 
 

• It closes the motion control loop. The real-time controller is implemented as code. 

• It provides low-level functionality in the form of a library of functions that can be used 
and built upon by high-level algorithms of other researchers. Some examples of 
available functions are: resetting and reading the encoders, sending commands to 
the motors and providing safety features. 

 
In this chapter, the most important aspects of the software will be discussed. A version of the 
code called omniPos is used as guide. This version is meant for position control experiments. 
The other versions have essentially the same structure, but use different control strategies.  
It is assumed the reader has a basic understanding of C. A full listing of the code is available 
separate from this report. 
 
The code consists of three main parts: 

1. A main program (omniPos.c) 
2. A function library (omni.c) 
3. A header file containing definitions and declarations (omni.h) 

 

omniPos

omniPos.c omni.c

omniPos.o omni.o

Source files

Object files

omni.h

Including header file

External libraries

Executable

Compiling

Linking objects and libraries

 

Figure 18: Software components 

 
A graphical representation of the relationship between these parts is shown in figure 18. 
Below, the three main parts, the source files, will be described in detail. Afterwards, in 
paragraph 6.4, the other components in the figure, their function and usage in experiments 
will be addressed. 
 
6.1: Main program (omniPos.c) 
 
In this project, the main program is the most important part of the code. For future usage of 
the robot as test bed, the function library omni.c is more valuable however, as it can be 
considered a device driver for the omnidirectional robot. The main program simply makes use 
of this driver; it is specific and needs to be changed for other applications. 
 
The heart of the main program is the function main (displayed in the next frame). This function 
prescribes exactly what actions should be taken and in what order. 
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// Main program: 

 int main(void) { 

 

   start_comedi(); 

   zero_encoders(); 

   read_pos_profile(); 

    

   start_rt_task(); 

   stop_rt_task(); 

    

   stop_comedi(); 

 } 

 
The first action in the main function is a call to the start_comedi function. Comedi is a 
collection of open source drivers for data acquisition and I/O cards, such as the DIO48 I/O 
card. With Comedi we have an interface to interact with the I/O card from inside Linux  
(figure 19). The start_comedi function configures and initializes the I/O card’s ports. 
 
The next function call to zero_encoders makes sure all encoders are reset to zero position 
and velocity. Subsequently, the desired test trajectory profile is loaded into memory with the 
function read_pos_profile. 
 
The next two function calls need some background information. 
 

 

Figure 19: C implementation and interactions with the environment at run time. 
Blue arrows denote data transfer, black arrows denote voltage signals. 

 
In applications such as motion control, it is very important that actions are executed at the 
exact right time instant to achieve good results, in other words “executed in real time”. 
Examples would be polling a sensor, processing data and sending an actuator command.  
Real-time operating systems, such as RTAI Linux, provide this functionality. They schedule 
tasks to be executed at specific time instances. It is also possible to periodically execute the 
same instructions. 
 
This is the kind of functionality that is desired for the implementation of a discrete motion 
controller. The function start_rt_task sets up a periodic real-time task in collaboration with the 
Linux/RTAI task scheduler. The function thread_fun specifies what the periodic real-time task 
is. 
 
Every sampling period, a number of things need to be done (see figure 20). The sampling 
period starts with the input phase. In this phase, all sensors are read, in this case the 
encoders. In the subsequent calculation phase, all processing is done. Based on the encoder 
count values the current orientation and velocities of the wheels are calculated (calculation 
phase).  
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Subsequently, in OmniPos, the tracking error is calculated from the difference between the 
real angular positions and the desired ones. Using the control laws, suitable control actions 
are determined. In the next phase, the output phase, these are sent as commands to the 
motors.  
 

 

Figure 20: Composition of sampling period 

 
In an ideal situation, the moment when the last command is sent in the output phase 
coincides with the end of the sampling period. The main program uses a hard real-time 
philosophy for non-ideal situations. In case there still is time available before the start of the 
next sampling period, the controller will perform no more actions and simply wait. Note that 
the motors are controlled by a voltage signal proportional to the desired duty cycle. In the wait 
phase, this voltage signal is held constant following the zero order hold principle. Thus in 
almost all cases, the motors will keep rotating in the wait phase. It is also possible that the 
sampling time expires before one or more of the input-calculation-output phases have been 
completed. In such cases, the remaining phases will be broken off and the new sampling 
period will start immediately. 
 
A philosophy that is not used here is soft real-time. The behaviour of this philosophy is slightly 
different. In case the sampling time expires before the input-calculation-output phases end, 
these phases will be completed first and only then a new sampling period is started. 
Obviously, a soft real-time philosophy is less strict. For very high sampling frequencies, the 
controller might not have enough time for calculation and for sending commands. Both 
philosophies will then lead to loss of performance. Hard real-time might show moments where 
the motors should be actuated, but are not. Soft real-time will actuate the motors, but sample 
periods and thus experiments may take longer than specified. To summarize, one should be 
cautious when increasing the sampling frequency; it cannot be increased indefinitely. 
 
At the end of the experiment, the function stop_rt_task will be called. This function instructs 
the Linux/RTAI task scheduler to remove the real-time task from memory. Additionally, 
performance data is written to disk. 
 
The last function call of the function main is stop_comedi. This function closes the Comedi 
interface. With this, we have reached the end of the function main. 
 
Finally, let’s take a more in-depth look at the function thread_fun where the discrete controller 
is implemented. Note that some portions of the code (denoted with …) have been omitted for 
clarity: 
 

void *thread_fun(void *arg) { 

 

   // Declare RT task variables: 

   ... 

   double t1; 

   int disp1 = 0, disp2 = 0, disp3 = 0; 

   double phi1 = 0.0, phi2 = 0.0, phi3 = 0.0; 

   double phidot1 = 0.0, phidot2 = 0.0, phidot3 = 0.0; 

   double u1 = 0.0, u2 = 0.0, u3 = 0.0; 

   double e_new1 = 0.0, e_new2 = 0.0, e_new3 = 0.0; 

   double e_total1 = 0.0, e_total2 = 0.0, e_total3 = 0.0; 

   double Kp = 90.0; 

   double Ki = 18.0; 

   double Kd = 0.0; 
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   int FirstRun = 1; 

   ...    

 

   while( RT_Count <= NT ) { 

 

     t1 = rt_get_cpu_time_ns()/1000000 ; 

 

     // -- Implement real-time tasks here: -- 

     Ct1[Count] = read_encoder(1);          // Read position motor 1 

     Ct2[Count] = read_encoder(2);          // Read position motor 2 

     Ct3[Count] = read_encoder(3);          // Read position motor 3 

      

     if (FirstRun == 1) { 

         // Calculate count displacement: 

         disp1 = calc_disp(Ct1[Count], 0); 

         disp2 = calc_disp(Ct2[Count], 0); 

         disp3 = calc_disp(Ct3[Count], 0); 

         FirstRun = 0;     

     } else { 

         // Calculate count displacement:  

         disp1 = calc_disp(Ct1[Count], Ct1[Count-1]); 

         disp2 = calc_disp(Ct2[Count], Ct2[Count-1]); 

         disp3 = calc_disp(Ct3[Count], Ct3[Count-1]); 

     } 

 

     // Calculate angular position: 

     phi1 = phi1 + disp1*(2.0*pi/55184.0); 

     phi2 = phi2 + disp2*(2.0*pi/55184.0); 

     phi3 = phi3 + disp3*(2.0*pi/55184.0); 

           

     Pos1[Count] = phi1; 

     Pos2[Count] = phi2; 

     Pos3[Count] = phi3;      

      

     // Calculate displacement: 

     // Ang disp = counts * ((360 degrees/rev) / (55184 counts/rev)) 

     // Ang vel  = angular displacement / delta t 

     phidot1 = (disp1*(2.0*pi/55184.0))/delta_t; 

     phidot2 = (disp2*(2.0*pi/55184.0))/delta_t; 

     phidot3 = (disp3*(2.0*pi/55184.0))/delta_t; 

      

     Vel1[Count] = phidot1; 

     Vel2[Count] = phidot2; 

     Vel3[Count] = phidot3; 

 

     // Calculate errors: 

     e_new1 = phi_ref1[Count] - phi1; 

     e_new2 = phi_ref2[Count] - phi2; 

     e_new3 = phi_ref3[Count] - phi3; 

                

     // PI control 

     e_total1 = e_total1 + e_new1; 

     e_total2 = e_total2 + e_new2; 

     e_total3 = e_total3 + e_new3; 

     u1 = Kp*e_new1 + Ki*delta_t*(e_total1); 

     u2 = Kp*e_new2 + Ki*delta_t*(e_total2); 

     u3 = Kp*e_new3 + Ki*delta_t*(e_total3); 

      

     move_motor(1,limit(round(u1))); 

     move_motor(2,limit(round(u2))); 

     move_motor(3,limit(round(u3))); 
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     ... 

     Count++; 

     RT_Count++; 

     rt_task_wait_period(); 

     ... 

     // End of real-time task 

   } 

   ... 

} 

 
To start with, a number of variables are defined including controller gains, system status 
variables and more. These will be discussed below. 
 
Then, the periodic real-time task is introduced in the form of a while loop. The loop will be 
repeated as long as RT_Count ≤ NT. The variable NT is the total number of samples that fit in 
the experiment length. The variable RT_Count is an index that stores the current sample 
number. Thus the while loop will be repeated until the desired experiment length has expired. 
 
Subsequently, the encoders are read with the function read_encoder and their values are 
stored in the Ct arrays. The encoders each return an encoder count: an integer between 0 
and 65535. When a motor shaft rotates in the positive direction, the associated encoder count 
will increase. Following the same logic, a motor that rotates in the negative direction will lead 
to a decrease of the associated encoder count. When the count exceeds 65535, the encoder 
will reset and count up from 0 because of C’s memory allocation to integers data types. 
Similarly, if the count drops below 0, it will reset to 65535 and count down.  
 
An encoder count value at a certain time instant on itself does not provide any information.  
However, since we know how many encoder counts make up a full rotation of a wheel shaft 
we can relate a change in encoder counts to a change in angular displacement. Using the 
function calc_disp, the displacements of the motor shafts are calculated and stored in the 
variables disp. This displacement is used to calculate the new angular positions of the wheel 
shafts phi1-3. The arrays Pos1-3 are also used to store this information. From the angular 
displacements and time length of a sampling period, the angular velocities phidot1-3 are 
calculated. The arrays Vel1-3 are also used to store this information. 
 
Now that the status of the robot is known, the tracking errors e_new1-3 can be computed 
from the current angular positions phi1-3 and the desired reference positions phi_ref1-3. 
These reference positions originate from the desired trajectory profile. In the case of a wheel 
profile, the function read_wheel_profile is used to fill the arrays phi_ref1-3 directly. In the case 
of a position or velocity profile, the functions read_pos_profile and read_vel_profile are used 
to read the required movement in the environment. This movement is then translated to 
required movement of the wheel shafts (phi1-3) using the function conv_speed which 
implements the kinematic relations developed in chapter 3. 
 
We have now arrived at the discrete implementation of the control laws. In this case, a PI 
controller is used. In chapter 3 the discrete PI control law was shown to be:  
 

∑
=

∆+=
k

j

jikpk eTKeKu
1

       (6.1) 

 
In the implementation, the variables e_total1-3 are intermediate variables and represent the 
sums from this equation. The variables u1-3 represent the computed control signals. Comedi 
requires that these control signals are integers and thus the outputs of the control laws need 
to be rounded with the function round. Moreover, the integers should lie within the range 
between -255 and +255. The last value corresponds with the wheels rotating in the positive 
direction at maximum velocity, whereas the first value corresponds with the same in negative 
direction. A value of 0 corresponds with a motor (or wheel) that is at rest.  
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To ensure that the control signal lies within the specified range, the function limit is used 
which has the following effect: 
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      (6.2) 

 
Here u is the original control signal [-] and u* is the limited control signal [-]. The limited 
control signal can now be sent through Comedi to the electromotors with the function 
move_motor. The robot’s hardware converts the control signal to a voltage automatically. 
 
Essentially, the while loop has now been executed once. The indices Count and RTCount are 
increased by one. The rt_task_wait_period function is called to put the system in the wait 
phase provided there is still time left in the sampling period, before the while loop starts from 
the beginning again. 
 
With this, the most important aspects of the main program have been discussed. 
 
6.2: Function library (omni.c) 
 
The second part of the code, omni.c, can be regarded as the robot’s function library. In this 
file, a number of functions are defined to provide low-level functionality. Most of these 
functions have been introduced in the previous paragraph: 
 

void start_comedi() 

void stop_comedi() 

 

int round(double u) 

int limit(int u) 

 

void read_wheel_profile() 

void read_vel_profile() 

void read_pos_profile() 

double conv_speed(int rot_id, double XLdot, double YLdot, double  

                  THETAdot, double theta) 

 

void zero_encoders() 

int read_encoder(int enc) 

int calc_disp(int c_new, int c_old) 

 

void move_motor(int motor, int speed) 

 
The entire code of all functions can be found in the source code, available separately.  
A detailed description of these functions goes beyond the scope of this report. 
 
The following two functions have been included both for functionality and safety. The function 
stop_motor does as its name suggests; it sends a stop command to the respective motor. Its 
counterpart emergency_stop does the same for all three motors. 
 

void stop_motor(int motor) 

void emergency_stop() 

 

A group of five functions that provide IR sensor functionality are included in omni.c. These 
functions are in a preliminary stage and need testing and tweaking before use: 
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int open_port(void) 

void close_port(int fd) 

void config_port(int fd) 

void write_to_port(int fd) 

void read_from_port(int fd) 

 
6.3: Header file (omni.h) 
 
The header file consists of three parts. In the first part, important constants are defined.  
Most of these variables are experiment settings, such as the length of an experiment 
exp_length, the sampling period delta_t and the length of the data array that contains the 
reference profile ref_size. 
 
In the second part, a set of shared variables is declared. Shared variables are variables that 
can be accessed by all three source files. The first group of these variables is related to the 
status of the robot, such as the current angular positions and velocities of the wheels. The 
second group contains the desired trajectory profile. 
 
The third part of omni.h contains declarations of the functions, which are defined in omni.c. Or 
in C terminology, this part specifies the prototypes of those functions. 
 
6.4: Use in experiments 
 
In the previous paragraphs, the source code of the software was introduced. However, as 
already hinted at in figure 19, the source code cannot be used directly to control the robot 
during experiments. The PC/104’s processor can only interpret machine code. Moreover, the 
Linux kernel can only communicate directly with a running executable. Therefore, the C code 
needs to be converted to an executable with the GCC compiler.  
 
This process can be divided in three steps (see also figure 18). In the first step, the include 
statement of omni.h in omniPos.c and omni.c is replaced with a copy of the header file. The 
second step involves transforming the source files to object files (compiled executable code). 
In the third and last step, the object files are merged into one file and linked with external 
libraries leading to an executable file omniPos (an executable has no extension in Linux). This 
basically means that references to standard functions and driver libraries are processed and 
incorporated into the compiled code. 
 
It is usually convenient to use a makefile during this process. In such a file, one can specify 
driver libraries, such as Comedi, that are to be linked to the C code during the compiling 
process. When the executable has been generated it can be started in a Linux Shell window. 
Note that if you are about to run a robot executable for the first time after booting, the addMod 
script should be executed first so that the Comedi modules are loaded and Linux associates 
the correct drivers with the I/O card. 
 
As an example, suppose the omniPos program is to be executed. Then the following 
commands have to be given in a Linux Shell window: 
 

>> make omniPos 

>> ./addMod 

>> ./omniPos 

 
Note that if you use a SSH client on the control station, you can give the same commands at 
SSH’s promptline. Of course, you first have to create a SSH connection with the robot. 
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Chapter 7: Basic controllers 
 
In this chapter, an overview will be presented of all experiments that were performed with 
several basic controllers based on proportional, integral and derivative feedback. 
Furthermore, in paragraph 7.2, the results of these experiments will be analyzed and 
discussed in the same order. 
 
7.1: Experiments 
 
All experiments are performed with a sampling frequency of 200 Hz (∆T = 5 ms) unless 
otherwise specified. Naturally, performance data files become larger for increasing sampling 
frequencies. The highest sampling frequency that gives reliable results is 500 Hz  
(∆T = 2 ms). For sampling frequencies exceeding this value, real-time issues begin to occur 
and the input-calculation-output phases start taking longer than the allocated sampling period. 
The selected frequency of 200 Hz combines compact output files with reliable results. 
 
7.1.1: Performance comparison of control laws 
 
In the first set of experiments, four different control laws will be compared: P, PI, PID and PD. 
One candidate will be selected for subsequent experiments. The four control laws will be 
implemented for both position and velocity control as suitability might be different between 
these two setups. The experiments in this chapter are to be performed frictionless: the robot 
is lifted on a stand so that the wheels do not come into contact with the ground. This setup 
was chosen because of friction and practicalities. More on this in paragraph 8.3.3. 
 
The trajectory profile during this experiment is a posref with a step of 0.1 m in the positive xL 
direction. No movement in the yL and θ direction is to occur. This profile is equivalent to the 
one displayed in figure 15, but with the difference that the step there is 1.0 m in the xL 
direction. From equations (3.12), it becomes clear that a 0.1 m step in the xL direction 
corresponds with a response of wheel 2 and 3 of roughly -2.165 rad and 2.165 rad 
respectively. Note that we can use this profile for both position and velocity control because 
the trajectory processing software automatically calculates setpoints for angular position and 
velocity. 
 
The control laws will be tuned as follows: 

Table 3: Tuning of control laws (position control) 

Control law Kp [-] Ki [-] Kd [-] 

P 90 - - 
PI 90 18 - 
PID 90 18 0.5 
PD 90 - 0.5 

 

Table 4: Tuning of control laws (velocity control) 

Control law Kp [-] Ki [-] Kd [-] 

P 20 - - 
PI 20 15 - 
PID 20 15 0.5 
PD 20 - 0.5 

 
In this experiment, we are specifically interested in incremental performance gains that occur 
when we switch to a new control law. The difference in tuning (Kp, Ki and Kd values) between 
position and velocity control is therefore irrelevant. 
 
The results of this experiment can be found in paragraph 7.2.1. 
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7.1.2: Tuning for performance requirements 
 
Now that the most suitable control law has been selected, the controllers can be tuned 
specifically for the two sets of requirements that were introduced in paragraph 4.4: all-round 
and precise. In this experiment, the best possible tuning for these sets will be determined and 
the performance will be compared with the requirements. The position controller is fed a 
posref profile with a step of  0.1 m in the xL direction, just like the previous experiment. The 

velocity controller, however, will use a velref profile with a step of 0.2 m/s in Lx& and no motion 

in the other directions. This velref profile is roughly equivalent to the posref profile used 
before. 
 
7.2: Results 
 
7.2.1: Performance comparison of control laws 
 
The first results that will be discussed are those from the experiment concerning the 
comparison of four different control laws. Each control law was examined three times.  
As discussed in the previous paragraph, for this posref profile, a step in xL will result in 
responses for wheel 2 and 3. The first row quoted for every control law is the response for 
wheel 2 and the second row is the response of wheel 3. 
 

Table 5: Results for P, PI, PID and PD with position control 

Control law Settling time 
[s] 

Overshoot 
[%] 

Rise time 
[s] 

Absolute  
ss error [rad] 

Absolute  
ss error [°] 

P (n=3) 0.145 
0.145 

0.1 
0.0 

0.105 
0.100 

0.0211 
0.0244 

1.2109 
1.3979 

PI (n=3) 0.140 
0.135 

1.6 
2.7 

0.100 
0.095 

0.0067 
0.0026 

0.3864 
0.1514 

PID (n=3) 0.155 
0.155 

0.2 
0.1 

0.110 
0.110 

0.0136 
0.0137 

0.7811 
0.7857 

PD (n=3) 0.155 
0.155 

0.0 
0.0 

0.110 
0.105 

0.0208 
0.0143 

1.1937 
0.8186 

 
Table 5 shows the results for the implementation of the four control laws as position 
controllers. Note that all performance indicators in this chapter and the next are averaged 
over the number of experiments. All settling times and rise times are rounded to the nearest 
multiple of the sampling period. The absolute steady state errors are computed by first taking 
the sum of absolute values of all steady state errors during subsequent experiments and then 
dividing by the number of experiments. The absolute values are used to prevent steady state 
errors with opposite signs from canceling each other, because that would falsely lead to 
‘better’ steady state errors. 
 
The table shows that there are clear differences in performance. By adding an integrating 
action, an increase can be seen in the overshoot percentage and a decrease is noticeable in 
the steady state errors. The settling time and rise time show a mixed result. The transition 
from P to PI shows a marked decrease of these two parameters, while going from PD to PID 
shows no change and a slight increase, respectively. When adding a differentiating action, 
one observes an increase of settling time and rise time and a decrease of the overshoot.  
The steady state error shows mixed results. 
 
The control laws were also implemented for velocity control. In table 6, the results of these 
experiments can be found. The rounding was done in the same way as for position control. 
 
 
 
 



 29 

Table 6: Results for P, PI PID and PD with velocity control 

Control law Settling time 
[s] 

Overshoot 
[%] 

Rise time 
[s] 

Absolute  
ss error [rad] 

Absolute  
ss error [°] 

P (n=3) 0.095 
0.030 

91.4 
36.9 

0.005 
0.005 

2.1367 
2.1420 

122.4 
122.7 

PI (n=3) 4.180 
5.355 

0.0 
0.0 

3.200 
3.690 

0.4600 
0.3716 

26.4 
21.3 

PID - - - - - 
PD - - - - - 

 
During the experiments, it became clear that velocity control is not suitable for tracking a step 
profile. For the P control law, the result is a fast response that doesn’t reach the amplitude 
prescribed by the trajectory. The PI control law shows a very slow response that succeeds 
better at attaining the correct amplitude, although the position controller’s performance is far 
superior. Adding a differentiating action introduces a lot of noise into the system because it 
amplifies deviations between trajectory and real velocities. It leads to a very jittery unstable 
response, even for small values of Kd and larger sampling periods, which is harmful for the 
electromotors. 
 
Based on the results of the two experiments above, the PI control law was selected for further 
use. The following reasons were compelling to make this choice: 
 

1. PI is the optimal control law for position control. Although the overshoot is slightly 
higher than for the other laws, it is still well below 5%. For velocity control, PI gives a 
slow but more accurate response than P.  

2. There is a preference for the same control law for both position and velocity control. 
3. Derivative feedback did not yield improvements and often makes the actuators 

saturate (control inputs u reach their limits). More on saturation in the next chapter. 
 
7.2.2: Tuning for performance requirements 
 
In this paragraph, it will be checked whether the controllers satisfy the requirements 
presented in chapter 4. 
 
The result of the tuning phase is shown in the table below. In position control, one notices that 
the Kp and Ki values for the precise controller are higher than those for the all-round 
controller. This is expected considering that an as-small-as-possible steady state error will 
require a lot of control effort. It was not possible to tune the velocity controller to the precise 
set of requirements, since the necessary Kp and Ki values would lead to a very noisy, 
unstable response. An all-round velocity controller was developed, though. 
 

Table 7: Tuning for performance – selected values for Kp and Ki 

Control type Kp [-] Ki [-] 

Position, all-round 90 18 
Position, precise 200 50 
Velocity, all-round 20 15 
Velocity, precise - - 

 
Now let’s take a look at the results. In figure 21, 22 and 23, the step response of the system 

with all-round position control is shown. Figure 21 shows that 
1φ stays zero, while

2φ  

and
3

φ show a reasonably fast step response, as we expected. Figure 22 and 23 provide extra 

information as they also show the amplitude of the tracking error and the desired (not limited) 
control input. At the instant of the step in the reference, the tracking error is largest but 
decreases quickly soon afterwards. One also notices that control inputs u stay in the band 
between -255 and 255. 
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The step responses of the precise position controller look very similar. One interesting thing 
can be seen in figure 24. Due to the shock of the step, it sometimes happens that the position 
of wheel 1 also changes very slightly. In the upper subplot of the figure we can see a close-up 
of exactly that. The wheel moves 4.55·10

-4
 rad, or exactly 4 encoder counts. 
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Figure 21: Reference and real positions (all-round position control) 
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Figure 22: Position, tracking error and control input for wheel 2 (all-round position 
control). The blue dotted lines in the bottom graph represent -255 and +255. 
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Figure 23: Position, tracking error and control input for wheel 3 (all-round position 
control). The blue dotted lines in the bottom graph represent -255 and +255. 
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Figure 24: Reference and real positions (precise position control) 

In figure 25 and 26, examples of step responses of the all-round velocity controller are 
presented. The results of this controller show a general step response with high-frequency 
components superpositioned on it. These components make it hard to determine the precise 
values of the performance indicators. Moreover, spikes can occur in the response and distort 
the values. Therefore, it is necessary to apply data filtering to the responses. 
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Figure 25: Velocity, tracking error and control input for wheel 2 (all-round velocity 
control). The blue dotted lines in the bottom graph represent -255 and +255. 
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Figure 26: Velocity, tracking error and control input for wheel 3 (all-round velocity 
control). The blue dotted lines in the bottom graph represent -255 and +255. 

 



 33 

In figure 27, which shows a step response of the velocity controller with spikes, the benefit of 
filtering is quite clearly visible. 
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Figure 27: Original and filtered step response (all-round velocity control) 

 
The filtering sequence is as follows: 
 

1. Clipping of the signal at limits that do not affect the true signal. In this step, upper and 
lower bounds for the signal are defined. Spikes that exceed these bounds will be 
clipped: the part that exceeds the bound will be cut off and set equal to the violated 
bound. 
 

2. The low-frequent trend of the signal is computed by applying a first order low-pass 
Butterworth filter to the signal using Matlab’s filtfilt with the special property of zero 
phase distortion. 
 

3. The detrended normalized response is computed by subtracting the trend from the 
clipped signal. This operation transforms the signal so that the trend becomes the 
zero value of the signal. 
 

4. Despiking of the detrended signal by setting any signal value that exceeds the ± 2σ 
limits to zero, where σ is the standard deviation of the signal. 
 

5. As last step the trend is restored by adding it to the filtered signal, yielding a filtered 
velocity response. 

 
The overshoot is computed from the filtered response. The rise time is computed from the 
time instances where the response reaches 10% and 90% of the final value. This 10% value 
is based on the filtered response as the low-frequent trend does not represent the step in 
velocity well. The 90% value is based on the trend, though, as is the settling time.  
 
For the steady state error we want to take the high frequent nature of the response into 
account because in the end this is what the user experiences when he uses the robot. 
Contrary to a step response of the position controller, no clear end values are visible for 
velocity control.  
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Therefore, a new error parameter is introduced for velocity control which resembles the idea 
behind the steady state error and will be used as equivalent performance indicator: 
 

)))(500((
500

errorlastabsmeane =       (7.1) 

 
e500 is the mean absolute error computed from the last 500 samples of the response [rad/s]. 
 
In tables 8 and 9, the results of the experiment are shown. In the first column labeled ‘control 
type’, the number of experiments that were performed are noted in round brackets. We can 
see that both the all-round and precise position controller satisfy their respective sets of 
requirements. Unfortunately, the all-round velocity controller does not satisfy the 
requirements. For the steady state error of the velocity control, the above-mentioned e500 is 
used. Although the e500 falls within specifications, the same cannot be said about the settling 
time, overshoot and rise time. The precise position control performs quite well with some 
instances where the absolute steady state error is only a few encoder counts. On average, 
the absolute steady state error is 40 to 50 counts. 
 

Table 8: Results of ‘tuning for performance’ experiment (position control) 

Control type Settling 
time [s] 

Overshoot 
[%] 

Rise time 
[s] 

Absolute  
ss error [rad] 

Absolute  
ss error [°] 

All-round      
Requirements < 0.250 < 5.0 < 0.100 s < 0.0175 < 1.0000 
Position 
control  (n=3) 

0.175 
0.135 

2.6 
3.2 

0.095 
0.095 

0.0070 
0.0091 

0.4020 
0.5212 

      
Precise      
Requirements Small Small Small Small << 1.0000 
Position 
control (n=3) 

0.165 
0.165 

12.0 
12.0 

0.060 
0.055 

0.0053 
0.0044 

0,3037 
0,2523 

 
 

Table 9: Results of 'tuning for performance' experiment (velocity control) 

Control type Settling 
time [s] 

Overshoot 
[%] 

Rise time 
[s] 

e500 [rad/s] e500 [rpm] 

All-round      
Requirements < 0.250 < 5.0 < 0.100 s < 0.1047 < 1.0000 
Velocity 
control (n=4) 

3.450 
3.520 

8.1 
0.0 

1.530 
1.660 

0.0448 
0.0528 

0.4280 
0.5044 

 
To summarize, one can say that position control satisfies the requirements whereas velocity 
control does not. 
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Chapter 8: Enhanced controllers 
 
In the previous chapter, the performance of some basic controllers was investigated.  
By taking into account a number of non-linear effects, it might be possible to improve 
performance. First, several non-linear effects will be studied. Then, one of these effects will 
be selected and solutions for this phenomenon are implemented. Thereafter, experiments are 
performed, including one on the lab floor, and the results will be discussed. 
 
8.1: Actuator saturation and other non-linearities 
 
8.1.1 Actuator saturation 
 
In control, one often has to deal with the fact that the allowable values of the control input u(t) 
are limited. This is also true for the omnidirectional robot. There is a constraint on the 
maximum angular velocity the electromotors, the actuators of the system, can provide. The 
motors are unable to go faster than 45 rad/s in any direction. 
 
This limitation can lead to performance, which is worse than the situation with no limits, for 
two reasons: 

1. The response-times of the system are usually longer, since the actual inputs are 
generally smaller. 

2. The control strategy does not take the limitation into account and has poor behaviour 
at instances where the inputs are limited. 

 
One can think of the actuator limitation as a saturating element between the controller C(t) 
and the system P(t), which limits the control action, regardless of the controller’s output. Or in 
other words, although the controller asks for a desired control input udes(t), the actuator can 
only deliver a constrained u(t), see figure 28. 
 

 

Figure 28: Feedback control system with saturating actuators 

 
The behaviour of the saturating element can be written as: 
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     (8.1) 

 
Here umax and umin are the voltages corresponding to the maximum angular velocities in 
positive (+255) and negative direction (-255), respectively. 
 
From literature [4], it is known that when saturation of the actuators occurs, a normal PI 
controller will keep integrating and the udes(t) continues to increase even though this has no 
benefit. After all, the actuators are already providing what they can. Moreover, this charge 
caused by winding up of the integrator must be removed later, resulting in a substantial 
overshoot and waste of valuable time to get u(t) back to a useful level. 
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8.1.2 Deadband 
 
Another non-linear effect that manifests itself on the robot is deadband. We use this term to 
describe the effect that for small control input values u, corresponding with small non-zero 
rotational velocities, no rotation of the wheels occurs because of friction. A quick investigation 
was undertaken to learn more about the deadband effect and it was learnt that the boundaries 
– the values u that were just on the boundary between stick/slip and rotation – varied among 
wheels, rotation directions and successive experiments. This makes deadband a complex 
problem to solve and addressing it falls outside the scope of this project. 
 
 
8.2: Solutions for actuator saturation 
 
From the two non-linear effects described in the previous paragraphs, actuator saturation was 
selected to be addressed. Below, two methods will be introduced to improve performance 
when actuator saturation occurs. 
 
8.2.1: Integrator anti-windup 
 
Resolving the winding up effect of the integrator is relatively straightforward. A strategy called 
integrator anti-windup will be implemented. The basis of this strategy is to stop integrating 
when we detect actuator saturation and thus improve the overshoot and response times. 
 
This is implemented as follows (see page 23 for the implementation without anti-windup): 
 

double umax = 255.0, umin = -255.0; 

... 

// PI control with anti-windup 

if ((u1 < umax) && (u1 > umin)) e_total1 = e_total1 + e_new1; 

if ((u2 < umax) && (u2 > umin)) e_total2 = e_total2 + e_new2; 

if ((u3 < umax) && (u3 > umin)) e_total3 = e_total3 + e_new3;           

u1 = Kp*e_new1 + Ki*delta_t*(e_total1); 

u2 = Kp*e_new2 + Ki*delta_t*(e_total2); 

u3 = Kp*e_new3 + Ki*delta_t*(e_total3); 

 
 
The controller checks if the desired control inputs u1, u2, u3 fall outside of the limits set by umax 
and umin. If this is so, no integration will be performed (etotal is not changed). If the control 
inputs fall inside the limits, integration is allowed as normal (etotal is changed). 
 
Note that this is different from equation (6.2), because there the limits of the actuator are 
acknowledged, but the control logic itself is not adapted to overcome the negative implications 
of these limits. 
 
Integrator anti-windup can be added to enhance both position control and velocity control. 
The expanded main programs are called antiPos.c and antiVel.c, respectively. In paragraph 
8.3, a number of experiments with anti-windup will be discussed. 
 
8.2.2: Saturation prevention 
 
Another strategy to deal with actuator saturation is saturation prevention. 
 
To derive an algorithm for saturation prevention, let us start with a slightly modified control law 
for PI position control: 
 

xKxxKu ddp
&−−= )(        (8.2) 

 
Here xd is the desired position [rad] and x the real position [rad]. Note that the derivative term 
uses the derivative of the real position, instead of the derivative of the error. 
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We can rewrite this equation as follows: 
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The term in straight brackets will be called dx& , the derivative of the desired position or 

desired velocity [rad/s], even though strictly speaking it is not the same as the real desired 
velocity. 
 

A saturation parameter η [-] is introduced as a gain for dx&  and (8.3) is rewritten as:  
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Here 
max

x& is the maximum attainable angular velocity of the wheels in either rotation direction 

[rad/s].  
 
One could say that the position control law is rewritten in a special kind of velocity control law. 
Actuator saturation is defined as the moment when the desired velocity exceeds the 
maximum. Essentially, when saturation occurs, the desired angular velocity term in (8.4) is 
replaced with the maximum possible angular velocity. In all other cases the desired angular 
velocity is left in peace. 
 
This can be implemented as follows (only shown for wheel 1): 
 

double phidot_max = 45.0; 

... 

// PI control with saturation prevention 

if (phidot_des1 > phidot_max) { 

eta1 = phidot_max / phidot_des1; 

} else if (phidot_des1 < -phidot_max) { 

eta1 = -phidot_max / phidot_des1; 

} else { 

    eta1 = 1.0; 

} 

... 

u1 = Kd*((eta1*phidot_des1) – phidot1); 

... 

 
A small number of experiments were performed with this strategy but the results did not 
conform to expectations. It is recommended that both the concept and implementation 
introduced above are checked thoroughly and possibly altered before use. 
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8.3: Experiments 
 
8.3.1: Anti-windup: comparison with basic controllers 
 
From the structure of the anti-windup implementation, it can be easily understood that a PI or 
PID controller using this strategy will perform as well as a normal PI or PID controller, in the 
absence of actuator saturation. This was also verified with a number of experiments, which 
will not be discussed in this report. Of course, when saturation occurs, we expect differences. 
 
To determine whether anti-windup enhanced controllers really perform better than basic 
controllers when facing actuator saturation, an experiment has to be set up.  
 
For position control, two different posref profiles are used with a step of 1.0 m and 2.0 m in  
xL direction, respectively, and no movement in the other directions. These profiles require the 
robot to instantly move up to 2 meters. This will lead to saturation of the actuators because 
such an instantaneous move is physically impossible; it takes some time for the robot to 
perform such movement. This provides an ideal way to study actuator saturation. The two 
profiles will first be supplied to a basic PI position controller and then to a PI position controller 
with anti-windup. Both are tuned to the all-round set of requirements: Kp = 90, Ki = 18. 
 
It is also interesting to see the results for velocity control. Therefore, the performance of a 
basic PI velocity controller and a PI velocity controller with anti-windup are also compared. 
The all-round set of requirements is used for both: Kp = 20, Ki = 15. These controllers are fed 
two velref profiles with a step of 2.0 m/s and 4.0 m/s in xL direction. 
 
Once again, the experiment is performed frictionless. 
 
8.3.2: Anti-windup: using a 3

rd
 order profile 

 
Step responses provide a wealth of information on a system and this was the main reason to 
use them up until now. It is also interesting, however, to use other kinds of trajectory profiles. 
In this experiment, we will use a double-sided 3

rd
 order profile and see how well our enhanced 

controllers can keep track of it. 
 
In essence, a 3

rd
 order profile is a very smooth position trajectory. This is accomplished by the 

absence of discontinuous steps in the acceleration profile from which it is generated. In fact, 
the acceleration profile only contains zero or linear slopes and is therefore of first order. The 
position profile, after two integrations, is thus of third order. The 3

rd
 order profile contains a 

smooth acceleration phase, followed by a constant-velocity phase and finally a smooth 
deceleration phase. The double-sided 3

rd
 order profile is created by fusing a normal and a 

mirrored 3
rd

 order profile together. In this way, the wheel will return to its original starting 
position at the end of the experiment. 
 
The profile is supplied as posref profile (see figure 29) and has the double-sided 3

rd
 order 

function for xL. No movement in yL and θ is to occur. We expect a response for wheel 2 and 3. 
 
As controllers, we will first use an antiPos and then an antiVel controller and the posref profile 
is supplied to both. The total length of the experiment is 40 seconds. It will be performed 
frictionless. 
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Figure 29: Double-sided 3rd order profile (posref) 

 
8.3.3: Anti-windup: experiment on lab floor 
 
Up until now, all experiments were performed frictionless. The motivation for this was 
threefold. First of all, performance comparison is more straightforward if rolling friction is kept 
out of the experiments. Secondly, the robot is currently supplied with power by stationary 
voltage sources through power cables instead of batteries. This set-up creates challenges 
when it comes to testing because the cables put limitations on the robot’s movement. Thirdly, 
wireless communication with the robot, which makes ground experiments much more 
convenient, was established relatively late in the project. Therefore, the number of ground 
experiments are limited. 
 
Nevertheless, the omnidirectional robot was designed as testing bed for new algorithms and 
its operating environment consists of the laboratory floor. Keeping this in mind, it is important 
to also test performance in that environment. 
 
In this last experiment, a more elaborate maneuver will be performed than anything up until 
now. Figure 30 shows the letter L trajectory profile. Firstly, the robot has to move 2 meters in 
the positive xL direction with a constant velocity of 0.2 m/s. This is then followed by a 
translation of 1 meter in the positive yL direction with a constant velocity 0.2 m/s. Next, the 
robot will move back 1 meter in the negative yL direction to arrive at the previous waypoint. 
Finally, the robot will remain stationary for 5 seconds. The total length of the experiment is 25 
seconds. 
 
This experiment will be performed solely using a precise PI position controller with anti-
windup (Kp = 200, Ki = 50). 
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Figure 30: Posref trajectory profile for floor experiment 

 
8.4: Results 
 
8.4.1: Anti-windup: comparison with basic controllers 
 
In this paragraph, the results of the comparison between basic controllers and those 
enhanced with anti-windup will be discussed. Two profiles with differing step amplitudes were 
supplied to the controllers to see if performance and the amount of saturation are related. 
First, let us discuss the results of this experiment when using position control (see table 10). 
 

Table 10: Comparison of basic and enhanced controllers experiencing actuator saturation 
(position control) 

Experiment 
type 

Settling 
time [s] 

Overshoot 
[%] 

Rise time 
[s] 

Absolute  
ss error [rad] 

Absolute  
ss error [°] 

Step 1.0 m      
Without a.w. 
(n=5) 

2.065 
2.075 

5.7 
5.6 

0.400 
0.400 

0.0740 
0.0659 

4.2387 
3.7769 

With a.w. 
(n=5) 

0.510 
0.510 

0.5 
0.6 

0.395 
0.395 

0.0052 
0.0112 

0.3005 
0.6406 

Step 2.0 m      
Without a.w. 
(n=5) 

5.175 
5.160 

9.9 
9.9 

0.795 
0.795 

0.2851 
0.2732 

16.3339 
15.6521 

With a.w. 
(n=5) 

0.975 
0.975 

0.4 
0.3 

0.790 
0.790 

0.0065 
0.0073 

0.3707 
0.4167 

 
In the first column labeled ‘experiment type’, we use the abbreviation a.w. for anti-windup. 
The number of experiments that were performed are noted in round brackets. 
 
From the results, one can conclude that anti-windup substantially improves the performance 
of the controllers during actuator saturation. The settling times, overshoots and steady state 
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errors show a dramatic decrease. The decrease in rise time is much smaller, but still 
significant. From the results, we also learn that the performance improvement is not linear in 
the amount of saturation. The performance improvement of adding anti-windup when using a 
2.0 m step is larger in a relative sense than when using a 1.0 m. This is especially striking 
when observing the overshoot. 
 
In table 11, the results for velocity control are shown. As before, we use the e500 performance 
indicator instead of the steady state error. Unfortunately, for velocity control, we must 
conclude that there’s no significant performance improvement when anti-windup is added. 
This does not invalidate the smarter controller usage of the anti-windup strategy, however. 
 

Table 11: Comparison of basic and enhanced controllers experiencing actuator saturation 
(velocity control) 

Experiment 
type 

Settling 
time [s] 

Overshoot 
[%] 

Rise time 
[s] 

e500 [rad/s] e500 [rpm] 

Step 2.0 m/s      
Without a.w. 
(n=2) 

2.935 
3.070 

0.0 
0.0 

1.305 
1.345 

0.2638 
0.2803 

2.5191 
2.6767 

With a.w. 
(n=2) 

3.120 
2.960 

0.0 
0.0 

1.435 
1.370 

0.3921 
0.4080 

3.7438 
3.8956 

Step 4.0 m/s      
Without a.w. 
(n=2) 

0.105 
0.140 

0.4 
0.0 

0.070 
0.060 

42.3082 
42.3611 

404.0135 
404.5182 

With a.w. 
(n=2) 

0.130 
1.950 

0.0 
2.0 

0.095 
0.085 

41.8388 
42.7128 

399.5306 
407.8772 
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Figure 31: Comparison of position, tracking error and control input for wheel 3 without 
(red) and with anti-windup (green). The blue dotted lines in the bottom graph represent  
-255 and +255. 
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In figure 31, a representative graph is shown that depicts the performance of a basic and 
enhanced PI position controller during saturation. Note that the bottom subplot shows udes, the 
desired control input, which exceeds the actuator limits as we expect. 
 
8.4.2: Anti-windup: using a 3

rd
 order profile 

 
In this paragraph, the tracking of a 3

rd
 order profile will be discussed. Since another setpoint 

trajectory is used, one can imagine that the original tuning for a step profile will not perform as 
well here. Therefore, new combinations of Kp and Ki values were examined. In the end, a new 
optimal pair was selected for the enhanced PI position controller: Kp = 1000, Ki = 400. This 
pair performed significantly better than the original tuning. For the enhanced PI velocity 
controller, no new tuning was selected because values exceeding Kp = 20, Ki = 15 lead to a 
bad response. 
 
In tables 12 and 13, the results for position and velocity control are shown. The experiment 
has been performed five times for each controller. Note that for velocity control, numerical 
integration was used to arrive at results in “the position domain”. 
 
Since we are not dealing with a step input, the only performance indicator we can use is the 
error. We are not really interested in the final steady state error, but rather the tracking error 
during the maneuver.  
 
For this experiment, two new ways of quantifying tracking error were introduced: 
 

))(( errorabsmeanemean =        (8.6) 

))(max(
max

errorabse =        (8.7) 

 
emean is the mean value of the absolute values of the tracking error during an experiment [rad]. 
emax is the maximum value among the absolute values of the tracking error during an 
experiment [rad]. 

Table 12:  Results of tracking a 3rd order profile (position control) 

Wheel 
 

Mean absolute 
error [rad] 

Mean absolute 
error [°] 

Max absolute 
error [rad] 

Max absolute 
error [°] 

2 (n=5) 
3 (n=5) 

0.0423 
0.0426 

2.4259 
2.4397 

0.0899 
0.0931 

5.1497 
5.3365 

 

Table 13: Results of tracking a 3rd order profile (velocity control) 

Wheel 
 

Mean absolute 
error [rad] 

Mean absolute 
error [°] 

Max absolute 
error [rad] 

Max absolute 
error [°] 

2 (n=5) 
3 (n=5) 

3.2985 
3.2909 

188.9878 
188.5558 

5.4305 
5.3987 

311.1459 
309.3227 

 
From the tables above, we can conclude that the mean tracking error for position control 
during the experiment was about 0.042 rad or roughly 2.4°. The maximum tracking error was 
about 0.093 rad or roughly 5.3°. When one considers that the profile requires relatively low 
velocities and thus experiences a relatively large influence from friction and deadband, this is 
a good result.  
 
The results for velocity control are very different, even though we supplied the same input 
trajectory. The average tracking error for velocity control during the experiment was about 
3.29 rad or roughly 189°. The maximum tracking error was about 5.43 rad or roughly 311°. 
Thus, on average, the velocity controller lags behind half a wheel rotation, with nearly a full 
wheel rotation in the worst case. We can conclude that position control is far superior to 
velocity control when it comes to controlling the robot. 
 
In figures 32 and 33, representative responses for position and velocity control are shown. 
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Figure 32: Position, tracking error and control input for position control (3rd order 
profile). The blue dotted lines in the bottom graph represent -255 and +255. 
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Figure 33: Position, tracking error and control input for velocity control (3rd order profile). 
The blue dotted lines in the bottom graph represent -255 and +255. 
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8.4.3: Anti-windup: experiment on lab floor 
 
The ground experiment was performed four times to get significant results. The reference 
profile contains the xL and yL coordinates and therefore all three wheels are necessary to 
execute the task successfully.  
 
We will once again look at the tracking error during the experiment: the mean absolute error 
and the maximum absolute error. In table 14, the results of this experiment are shown. 
 

Table 14: Results of floor experiment 

Wheel 
(n=4) 

Mean absolute 
error [rad] 

Mean absolute 
error [°] 

Max absolute 
error [rad] 

Max absolute 
error [°] 

1 
2 
3 

0.1588 
0.1140 
0.1537 

9.1000 
6.5332 
8.8078 

2.1566 
0.6696 
2.0499 

123.6 
38.4 
117.5 

 
One notices that the errors exceed the 1° mark, but please remember that this requirement 
was set for a response to a step input in a frictionless environment. All in all, a mean absolute 
error of up to roughly 9° is quite good. Moreover, the user now has an idea of the capabilities 
of the omnidirectional robot. With further research and smarter controllers, it is certainly 
possible to improve on these values.  
 
In the following three figures, representative examples of the responses of the three wheels 
are shown. 
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Figure 34: Position, tracking error and control input for wheel 1 (ground experiment). 
The blue dotted lines in the bottom graph represent -255 and +255. 
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Figure 35: Position, tracking error and control input for wheel 2 (ground experiment). 
The blue dotted lines in the bottom graph represent -255 and +255. 
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Figure 36: Position, tracking error and control input for wheel 3 (ground experiment). 
The blue dotted lines in the bottom graph represent -255 and +255. 
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Conclusions 
 
In this report, the omnidirectional robot at NUS’ Control and Mechatronics laboratory was 
introduced. Its systems and kinematics were described and the development and 
implementation of planar motion control algorithms were discussed. A new way to specify 
desired movement was created. Several experiments were performed to determine the time-
domain performance of the motion controllers under a variety of conditions. Two non-linear 
performance-degrading effects were identified and strategies to mitigate them were proposed. 
Finally, the robot itself was modified during this project. 
 
A number of conclusions can be drawn in regards to the above: 
 

• The omnidirectional robot was adapted for wireless control via the SSH protocol. 
 

• A library of low-level functions was created to simplify access to basic functionality of 
the robot. It can be easily built upon with high-level algorithms for localization, 
trajectory planning and tracking. 
 

• Position control is perfectly suitable to control the robot. Velocity control is not 
recommended because of its significantly lower performance in time-domain. 
 

• Of the four feedback control laws examined, proportional-integral (PI) control yielded 
the best results. 
 

• Adding anti-windup to a controller with integrating action can significantly improve 
time-domain performance in light of actuator saturation. 
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Appendix 1: Encoder count verification 
 
During the development of control algorithms for the omnidirectional robot, it was observed 
that the real number of encoder counts per revolution of a wheel shaft did not exactly match 
the nominal encoder resolution that one would expect from the specifications: 56000 
lines/revolution. 
 
A visual marker was placed on the wheel shafts and a full number of rotations were executed. 
The end positions of the wheel shafts after rotation did not correspond with the marker, but 
differed significantly from the intended positions. This was a surprising find since these 
experiments were performed in a “frictionless” environment with no contact between wheels 
and floor. Furthermore, it was observed that when the number of executed rotations was 
increased, this also yielded a larger difference between intended and real end position. It was 
obvious that such a diverging error would degrade performance.  
 
It was suspected that this situation had something to do with the encoder resolution. 
Subsequently, an experiment was devised to verify the nominal encoder resolution or quantify 
the correct number of encoder counts per revolution. Using the nominal encoder resolution 
(56000 lines/rev.), the wheels were rotated manually with extreme care until ten full rotations 
had been executed. This experiment was repeated to get a statistically relevant result. 
 

Table 15: Encoder count verification 

Experiment Measured displacement [rad] 

1 61.916393 
2 61.917201 

 
 
From mathematics, it is known that 10 rotations should give exactly 20π radians, which is 
clearly not the case here. Fortunately, with this experimental data, the real encoder resolution 
can be calculated: 
 

Real resolution = ⋅
π20

ntdisplacememeasured
nominal resolution   (A.1) 

 
Using equation (A.1) and substituting all values, it follows that the real encoder resolution is 
55184 encoder counts/revolution. 
 
This real encoder resolution was implemented and the experiment was repeated several 
times. No deviations between desired and real positions could be detected in any subsequent 
experiments. 
 
It is challenging to find the reason behind this situation. Optical encoders are known for their 
accuracy and bitwise errors are unlikely. A mechanical explanation seems more probable. 
One of the possible reasons could be that the gearbox’s reduction ratio might not be exactly 
14:1 in reality, either due to non-linear effects or manufacturing imperfections. A lower 
reduction ratio would result in a reduction of the number of encoder counts/revolution. Finding 
the cause of the deviation falls out of the scope of this project, however. 
 
 

 
 


