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3.1. Introduction

.............................................................................................................................

3.1-0 Discrete signals and systems

Discrete-Time

Signal

A Sequence of numbers
» inherently Discrete-Time
» sampling Continuous-Time signals, ex) x{n], y[n]

Discrete-Time
System

»Inputs and outputs are Discrete-Time signals.

» A Discrete-Time(DT) signal is a sequence of numbers

»DT system processes a sequence of numbers x[n] to yield another
sequence y[n].

signal and System ||



3.1. Introduction

Discrete-Time

Signal by sampling CT signal

i) =e’

x(nT)=e™ =" = x[n]

I %

T =0.1: Sampling interval

n . Discrete variable taking on integer values.
conversion to process CT signal by DT system.

%
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Figure 3.1 A discrete-time signal.
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Signal and System |l



3.1. Introductlon

3.1-1 Size of DT Signal

» Energy Signal
E =Y |xn]’ (3.1)

Signal amp.— 0 as [n| >% = E, <o

»Power Signal
P —

X

(3.2)

N->% 2N +

for periodic signals, one period time averaging.

« ADT signal can either be an energy signal or power signal
« Some signals are neither energy nor power signal.
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3.1. Introduction
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»Example 3.1 (1)

Find the energy of the signal x[n]=n, shown in Fig. 3.3a and the power for the periodic
signal y[n] in Fig. 3.3h.
J.r[ni
5

1

(a)

x[n]

SRR NI IRE

=6 I{} -

Figure 3.3 (a) Energy and (b) power computation for a signal.

o

(b

By definition

E, = Z?I: =55

n :ﬂ
A periodic signal x[n] with period N, is characterized by the fact that

x[n] = xin 4+ Ny]
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3.1. Introduction
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»Example 3.1 (2)

The smallest value of N, for which the preceding equation holds is the fundamental period.
Such a signal is called Ny periodic. Figure 3.3b shows an example of a periodic signal y[n]
of period N, = 6 because each period contains 6 samples. Note that if the first sample is taken
at n =0, the last sample is at n = Ny — 1 =35, not at n = N;; = 6. Because the signal y[n] is
periodic, its power P, can be found by averaging its energy over one period. Averaging the
energy over one period, we obtain

e 5 55
P,.:az.ﬂ :E

n={
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3.2. Useful Signal Operations

» Shifting

= X¢[n]=x{n-3]

Left shift Right shift
¥ $
Advance Delay

n—n+M n—->n—-M

Figure 3.4 time shift : l
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3.2. Useful Signal Operations

-----------------------------------------------------------------------------------------------------------------------------

»Time Reversal
= x [n]=x[—-n] , H—>—n
= anchorpoint : n= 0

cf) —x|n]

011

¥
C it Figure 3.4 time reversal

N 11|
N )
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3.2. Useful Signal Operations

-----------------------------------------------------------------------------------------------------------------------------

»Example 3.2

In the convolution operation, discussed later, we need to find the function x[k — n] from x[n].

This can be done in two steps: (i) time-reverse the signal x[n] to obtain x[—n]; (ii) now,
right-shift x[—n] by k. Recall that right-shifting is accomplished by replacing n with n — k.
Hence, right-shifting x[—n] by k units is x[—(n — k)] = x[k —n]. Figure 3.4d shows x[5—n],
obtained this way. We first time-reverse x[n] to obtain x[—n] in Fig. 3.4c. Next, we shift
x[—n] by k = 5 to obtain x[k — n] = x[5 — n], as shown in Fig. 3.4d.

In this particular example, the order of the two operations employed is interchangeable.
We can first left-shift x[k] to obtain x[n + 5]. Next, we time-reverse x[n + 5] to obtain

X[=n+35] = x[5—n]. The reader is encouraged to verify that this procedure yields the same
result, as in Fig. 3.4d.

xk —nl=x-n+k]=x[—~(n—k)]

advance (k) Feverse

1. xln] — xAn+k] - x[-n+k]
n=n+k n=-n
reverse delay(k)

2. Anl > x{-n] > x~(n—k)]
n=—n n=n-—

Signal and System 1l



3.2. Useful Signal Operatlons

> Samplmg Flate Alteratlnn Demmatmn and Interpolatlun
= decimation ( down sampling )

x,[n]=x{Mn] , M must be integer values  (3.3)
/ N \
| 2 4 6 8 10 12 14 16 18 :‘iﬁl
aj
v dn] gdn] = x[2n]
{ ‘ ‘ Decimation [ Downsampling )
2 4 6 h E#l o=

b
Figure 3.5 Compression (decimation)
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3.2. Useful Signal Operations

-----------------------------------------------------------------------------------------------------------------------------

= interpolation ( expanding )

xln/L] n=00 =L x2
x,[n]= .
0 otherwise
L must be integer value more than 2. (3.4)

~ e i N
J H_U.U*LL I.LI LL

Iy

[P

[a&)
2 4 &6 § 10 12 K 16 IF
id)
\ j \ Figure 3.5 expansion (interpolation) of a signal. /
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3.3. Some Useful DT Signal Models

3.3-1 DT Impulse Function

0 n#0

8Tn] = {1 =9 (3.5)

/ | Eln]
i y
-
fa)
| Blmn — m]
—Jt - [
N m
\ b

Figure 3.6 Discrete-time impulse

sequence.

function:

"=*  (a) unit impulse sequence and (b) shifted impulse
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3.3. Some Useful DT Signal Models

3.3-2 DT Unit Stop Function

1 >0
] ={ & (3.6)
0 n<0

/
e

k!

Ly
| 1]
41 I
2
—M—I—i—u—d R e
L] 5 10 " —a-
\ (h)

| mlm]
| 0o

Figure 3.7 (a) A discrete-time u
ton u[n] and (b) its application.

nit step func-
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3.3. Some Useful DT Signal Models
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»Example 3.3 (1)

Describe the signal x[n] shown in Fig. 3.7b by a single expression valid for all n.

There are many different ways of viewing x[n]. Although each way of viewing yields a dit-
ferent expression, they are all equivalent. We shall consider here just one possible expression.

The signal x[n] can be broken into three components: (1) a ramp component x,[n] from
n=0to4, (2) a step component x2[n] from n =5 to 10, and (3) an impulse component x:[n]
represented by the negative spike at n = 8. Let us consider each one separately.

We express x,[n] = n(u[n] — u[n — 5]) to account for the signal from n =0 to 4.
Assuming that the spike at n = 8 does not exist, we can express x2[n] = u[n — 5] — u[n — 11]
to account for the signal from n =35 to 10. Once these two components have been added,
the only part that is unaccounted for is a spike of amplitude —2 at n = 8, which can be
represented by xi[n] = —28[n — 8]. Hence

xn]=x[n]+x,[n]+ x;[n]
=n(u[n]—uln—5]) +4(u[n—-5]—uln—11]) — 20| n—38]

for alln

Signal and System 1l
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3.3. Some Useful DT Signal Models

-----------------------------------------------------------------------------------------------------------------------------

»Example 3.3 (2)

We stress again that the expression is valid for all values of n. The reader can find several
other equivalent expressions for x[n]. For example, one may consider the step function from
n =0 to 10, subtract a ramp over the range n = 0-3, and subtract the spike. You can also play
with breaking n into different ranges for your expression.
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3.3. Some Useful DT Signal Models

3.3-3 DT Exponential y"

> CT Exponential ¢”

At t

€=y ( r=e* or A=In(y) )
EK) 8—0.31 =(07408).' 4r = 81.38154

An n

> =y ( y=e*or A=In(y))

» Nature of 7"

0 "
Eﬂn =€{a+; I =(€a€_; )n =:yn

i
e’lle’ ‘=e”1—e”

Y=
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3.3. Some Useful DT Signal Models
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a < exp. dec. LHP Inside the unit circle
a >0 exp.inc. RHP Outside the unit circle
a=1y o0sc Imaginary axis Unit circle

Exponentially decreasing

A Plane

a

1]
\ Figure 3.8 The A plane, the  plane, and their mEppng. /
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3.3. Some Useful DT Signal Models
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(0.5)" | (L1

‘!z - HH’

!
4 5 6 n—= 0 | L [+ no—-—
(3] (d)
Figure 3.9 Discrete-time exponentials y*.
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3.3. Some Useful DT Slgnal Models

3.3-4 DT Sinusoid cos(QQn+0)

» DT Sinusoid:  ccos(Cn+60) =ccosQRan+60)

= ¢ : Amplitude
= @ : phase in radians
= () : angle in radians
= ) : radians per sample
= [ : DT freq. (radians/21) per sample or cycles for sample
F =Ni : N, :period (samples/cycle)
0
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3.3. Some Useful DT Slgnal Models

N T =9
”llh W e
L ”ﬂumﬂ“ i
= About Figure 3.10
cos(%n+§) e Q=% @D F =2£=L (cycles/sample)

= cos(-n+6)=cos(Qn—0), same freq.|Q)|

» Sampled CT Sinusoid Yields a DT Sinusoid
= CT sinusoid

sampling

coswt= — x[n]=coswnT =cosn, Q=wT
T  Seconds

Signal and System |l



3.3. Some Useful DT Signal Models

3.3-5 DT Complex Exponential ei®n

e’ =cosQn+ jsinQn

—jOn

e ™ =cosQn— jsinQn freq : |Q|

e J€n ja

r=l1l &=nk
a point on a unit circle at an angle of n<

=re
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3.4. Examples of DT Systems

» Example 3.4 (Savings Account)
* input x[n] :adepositin a bank regularly at an interval T.
= output y[#] : balance
= interest r : per dollar per period T,

balance y[n] = previous balance y[n-1] + interest on y[n-1]
+ deposit x[n]

Sonl=yin=1]+nn—=1]+xn]=0+r)y[n-1]+xn] or

ylnl-ayin—11=x{n], a=1+r (3.9a)
delay operator form (causal)

= withdrawal : negative deposit, — x| 7]

» loan payment problem : y[0]=—M or —x{0]=—-M

» y[n+l]l—ay[n]l=x[n+1]: n—>n+1 (3.9b)
advance operator form (noncausal)




3.4. Examples of DT Systems

-----------------------------------------------------------------------------------------------------------------------------

= Block diagram

da] = ¥in] = ajn] = win] rJ
———— i[#] =t yin] = aaia]

b
iln] vin] = afn=1]
—— —r———

. ]

Figure 3,11 Schematic repre-

|
Hal sentations of basic operations
1d} 0N SEQUETICes.

(a)addition, (b)scalar multiplication, (c)delay, (d)pickoff node
/_ x[n] _1'-[_:!] \

N
]

yin—1]

Figure 3.12 Realization of the savings ac-
count system.

- J
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3.4. Examples of DT Systems

» Example 3.5 (Scalar Estimate)
n . nth semester
x[n]: students enrolled in a course requiring a certain textbook
yln]: new copies of the book sold in the 1 th semester.

= 14 of students resell the text at the end of the semester.
= book life is three semesters.

yln]+ i yin—1] +% y[n—=2]=x[n] (3.10a)
y[n+2] +—i~ yln+1]+ % yln]=x[n+2] (3.10b)

= Block diagram

1 1
yln]= = y[n—l]-g}[n—Z]H{n]
(3.10c)

[‘"iuul‘t 3.13 Realization of the

sales est

syslem roprescating

mate in Example 3.5,

o ; 1 @
Lt T l: =1 =1 1: e L F D =
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3.4. Examples of DT Systems

» Example 3.6 (1) (Digital Differentiator)
Design a DT system to differentiate CT signals. Signal bandwidth is
below 20kHz ( audio system )

=] i i) Discred

———— ——— PRI —— T —
sl .
CIT SR D

| Figure 3.2 Processing a continuous-time signal by means of a discrele-ume sysiem

x[n]= A:(HHT), yln]= y(nT)
dx
=—_  t=nT

y(t) = f=n

y(nT) = ? = %Fm;}% [.x(nT) —x((n —l)T)] . backward difference

t=nT

| o
mit Svwotoarmm
na 2S5 tem |



3.4. Examples of DT Systems

» Example 3.6 (2)

1
“olnl=lim— nl—x{n—1]}=

T : Sufficiently small
1

1
T

1

{x[n] - x[n—1]}

T< = =
2x highest freq. 40,000

25us

(A Lall-_

S

vin] [ vir)
1 T =t
T or +—=
s /

Figure 3.14 Digital differentiator and its realization.
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3.4. Examples of DT Systems

----------------------------------------------------------------------------------------------------------------------------

» Example 3.6 (3)

<incaseof x(t)=t >
Mnl=x@)|__=1__=nT 120

y[n]:%{nT—(n—l)T}zl n>1

= Forward difference

y[n] = {x[n-t—l] x{n]}

Signal and System Il



3.4. Examples of DT Systems

---------------------------------------------------------------------------------------------------------------------------

» Example 3.7 ( Digital Integrator )
Design a digital integrator as in example 3.6

; 1
y(t) = Ix(r)dr, t=nT 4 - o _ .
- B ayln = 1) a _

y(HT) = ]:i.ii][} k_z x(kT)T Figure 3.12 Realizal

ition of the savings ac-

count ?-!.-'.‘-ll.! m

R \_ J
y[n]:}g&T;x[k], T—>0

=T Zx[k] : accumulator
k=—m0

Soyln] = yin—=1]1=Tx[n]
block diagram : similar to that of Figure 3.12 (a=1 )

Signal and System Il



3.4. Examples of DT Systems

» Recursive & Non-recursive Forms of Difference Equation
ynl=T ) xlk] (3.14a), y[n]—y[n—1]1=Tx[n] (3.14b)
k=—
» Kinship of Difference Equations to Differential Equations
= Differential eq. can be approximated by a difference eq. of the
same order.
= The approximation can be made as close to the exact answer
as possible by choosing sufficiently small value for T.

» Order of a Difference Equation
= The highest — order difference of the output or input signal, whichever
is higher.
» Analog, Digital, CT & DT Systems
= — DT, CT — the nature of horizontal axis

— Analog, Digital — the nature of vertical axis.
-DT System : Digital Filter
-CT System : Analog Filter
-C/D, D/C : A/D, D/A




3.4. Examples of DT Systems

» Advantage of DSP
1. Less sensitive to change in the component parameter values.
2. Do not require any factory adjustment , easily duplicated in volume,
single chip (VLSI)
Flexible by changing the program
A greater variety of filters
Easy and inexperience storage without deterioration
Extremely low error rates, high fidelity and privacy in coding
Serve a number of inputs simultaneously by time-sharing,
easier and efficient to multiplex several D. signals on the same
channel
8. Reproduction with extreme reliability

NS e o

» Disadvantage of DSP
1. Increased system complexity (A/D, D/A interface)
2. Limited range of freq. available in practice (about tens of MHz)
3. Power consumption




3.4. Examples of DT Systems

3.4-1 Classification of DT Systems

» Linearity & Time Invariance
= kixy +kyxy, > ky +kyy,

= Systems whose parameters do not change with time (n)
=[f the input is delayed by K samples, the output is the same as before
but delayed by K samples.
Ex) y[nl=e "xn]

for x[n] and X,[n]=x[n—N,]
» Causal & Noncausal Systems

= gutput at any instant n = k depends only on the value of the input
x[n] forn<k

» Invertible & Noninvertible Systems

= § is invertible if an inverse system S, exists s.t. the cascade of S
and S, results in an identity system
Ex) unit delay <—> unit advance ( noncausal

Cf)  ylnl=x[Mn], y[n]=cosx[n], y[n]=f-x{n]|

Curcte
nd System ||



3.4. Examples of DT Systems

» Stable & Unstable Systems (1)
* The condition of BIBO ( Boundary Input Boundary Output ) and
external stability

oo

ynl=hn]*x{n]= Y hlm]x(n—m]

M=—00

< Z‘h[m]”x[n - m]|

m==m

NUE

i hlm|x[n—m]

If x[n] is bounded, then [x[n—m] < K, <o| = and

<K, i|h{m]\

H=—C

y[n]

Clearly the output is bounded if the summation on the right-hand side
is bounded; that is

i‘h{n]l <K, <o

n=-—x




3.4. Examples of DT Systems

» Stable & Unstable Systems (2)
= Internal ( Asymptotic ) Stability

For LTID systems,
y=|rle” and 7" =[r|"e”

Since the magnitude of ¢/7" is 1, it is not necessary to be considered.
Therefore in case of |}/|”

it |y|]<l, ¥»"—>0 as n—o  (stable)
it |y|>1, y" > as 1 —> 00 ( unstable )

it |y]=1,

n

1 =1 for all n ( unstable )




3.4. Examples of DT Systems

» Memoryless Systems & Systems with Memory
* Memoryless : the response at any instant n depends at most on the
input at the same instant n .

Ex) y[n] =sin x{n]

= With memory : depends on the past, present and future values of the
input.

Ex) yln]—yln—1]= x{n]




3.5. DT System Equations

» Difference Equations
yin+N]+ayln+N-1)+:-+a, yn+1]+a,ylnl=b, ,, AAn+M]
+by_yAn+M —11+---+b,_xn+1]1+b,x[n] (3.16)
order :  max(N,M)

» Causality Condition

wcausality : M<N
if not, y[n+ N] would depend on x{n+ M|

it M=N ,
yin+N]+ay[n+N-1]+---+a, yln+1]+a, y[n]=b,x[n+ N]
+bxln+N—1]+---+b,_x[n+1]+b,x[n] (3.17a)

= delay operator form
ylrl+ayln—1]1+---+a,_yln—N+1]+a,yln—N]=byx[n]
+bx[n—=1]+---+b, x[n—N+1]+b,x[n—N] (3.17b)




3.5. DT System Equatlons

3 5-1 Recurswe (Iteratwe) Solutlon of

Difference Equations

>  ylnl=-ayln-1]1-a,yln—-2]----—a,y[n— N1+b,x[n]
+bxln-1]+--+b,_xln—N+1]+b, x{n—N] (3.17¢c)

y[0]: + N initial conditions
« input x[0]
* x|-n]=0 for causality

= Example 3.8 (1)

Solve iteratively
v[n] = 0.5v[n — 1] = x[n] (3.18a)

with initial condition y[—1] = 16 and causal input x[n] = n* (starting at n = 0). This equa-
tion can be expressed as

vin] =0.5v[n — 1] 4+ x[n] {3.18b)

If we set n = 0 in this equation, we obtain
y[0] = 0.5y[—1] + x[0]
=0.5(16)+0=28

Signal and System Il



3.5. DT System Equations
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= Example 3.8 (2)

Now, setting n = 1 in Eq. (3.18b) and using the value v[0] = 8 (computed in the first step)
and x[1] = (1)* = 1, we obtain

y[1]=058)+(1) =5

Next, setting n = 2 in Eq. (3.18b) and using the value v[1] = 5 (computed in the previous
step) and x[2] = (2)°. we obtain

v[2]1 = 0.5(5) + (2)! = 6.5
Continuing in this way iteratively, we obtain

y[3] = 0.5(6.5) + (3)* = 12.25
y[4] = 0.5(12.25) + (4)* = 22.125

12.25¢ \

/- ¥m]

H
‘ s
" & @
3
Figure 3.15 licrative solution of a differ-
| ence egquation.

_ ” J
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3.5. DT System Equations
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= Example 3.9

Solve iteratively
v[n + 2] — v[n + 1] + 0.24y[n] = x[n 4 2] — 2x[n + 1] (3.19)

with initial conditions y[—1] = 2, v[—2] = 1 and acausal input x[n] = n (starting atn = 0).
The system equation can be expressed as

yv[n 4+ 2] = y[n + 1] — 0.24y[n] + x[n + 2] — 2x[n + 1] (3.20)

Setting n = —2 and then substituting y[—1] = 2, y[-2] = 1, x[0] = x[—1] = 0 (recall that
x[n] = n starting at n = 0), we obtain

y[0]=2-024(1)+0-0=1.76

Setting n = —1 in Eq. (3.20) and then substituting y[0] = 1.76, y[-1] = 2, x[1] = 1,
x[0] = 0, we obtain

y[11=1.76-0.24(2) + 1 -0=2.28

Setting n = 0 in Eq. (3.20) and then substituting y[0] = 1.76, y[1] = 2.28, x[2] = 2 and
x[1] = 1 yields

y[2] = 2.28 — 0.24(1.76) 4+ 2 — 2(1) = 1.8576
» Closed — form solution

Signal and System 1l



3.5. DT System Equations

» Operation Notation
= Differential eq. —— Operator D for differentiation
= Difference eq. —— Operator E for advancing a sequence.

oEx[nl=x{n+1], E’x[n]=x[n+2]
oy[n+1]—ayln]=x[n+1] — Ey[n]—ay[n]= Ex[n]
1 1 (E—a)yln] = Ex|n]
uy[n+2]+1y[n+l]+ﬁy[n]= x[n+2]—
(E* + - E+ i) yln]= E’*x[n]

416
(EY +aE"" +---+a,_ [E+a,)yln]=b,E" +bE"" +---+b, E+b,)x[n]
(3.24a)
O[E]y[n]= PlE]x{n] (3.24b)

QIEl=E" +aE"" +---+a, [E+a,  (3.24c)
PIE]|=b,E" +bE"" +---+b, \E+b, (3.24d)




3.5. DT System Equations

» Response of Linear DT Systems
(E" +a,E"" +---+a,_E+a,)y[n]
=(b,E" +bE"" +---+b,_E+b,)x[n] (3.24a)

QOLE]yln]= PE]x[n] (3.24b)

= LTID system
= General solution = ZIR (zero input response)
+ ZSR (zero state response)
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