Signals and Systems

Lecture 13:

Sampling and Aliasing

Today's lecture

- Aliasing
- Folding
- Ideal Reconstruction
- D-to-A Reconstruction
- Pulse Shapes for Reconstruction
- Sampling Theorem & Band-limited Signals

The Rest of The Story

- Spectrum of x[n] has more than one line for each complex exponential:
 - Called <u>aliasing</u>,
 - Many spectral lines.
- Spectrum of x[n] is periodic with period = 2π (for angular discrete frequencies), because

$$A\cos(\hat{\omega}n + \varphi) = A\cos((\hat{\omega} + 2\pi)n + \varphi)$$

Spectrum for x[n]

- Plot versus discrete (normalized) frequency.
- Include All Spectral Lines
 - Aliases for angular digital (normalized) frequencies:
 - add multiples of 2π
 - subtract multiples of 2π.
 - Folded Aliases
 - (to be discussed later)
 - aliases of negative frequencies.

Spectrum (More Lines)

Spectrum (Folding Case)

D-to-A Reconstruction

- Create continuous y(t) from y[n]
 - IDEAL
 - If you have formula for y[n]
 - Replace n in y[n] with f_st
 - y[n] = $A\cos(0.2\pi n + \phi)$ with $f_s = 8000$ Hz
 - $y(t) = A\cos(2\pi(800)t + \phi)$

D-to-A is Ambiguous!

- ALIASING
 - Given y[n], which y(t) do we pick ? ? ?
 - INFINITE NUMBER of y(t)
 - PASSING THRU THE SAMPLES, y[n]
 - D-to-A RECONSTRUCTION MUST CHOOSE ONE OUTPUT
- RECONSTRUCT THE <u>SMOOTHEST</u>
 ONE
 - THE LOWEST FREQ, if y[n] = sinusoid

Spectrum (Aliasing Case)

Reconstruction (D-to-A)

- CONVERT STREAM of NUMBERS to x(t)
- "CONNECT THE DOTS"

Sample & Hold Device

- CONVERT y[n] to y(t)
 - y[k] should be the value of y(t) at t = kT_s
 - Make y(t) equal to y[k] for
 - $^{\bullet}$ kT_s -0.5T_s < t < kT_s +0.5T_s

Square Pulse Case

Over-Sampling Case

Math Model for D-to-A

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]p(t - nT_s)$$

SQUARE PULSE:

$$p(t) = \begin{cases} 1 & -\frac{1}{2}T_s < t \le \frac{1}{2}T_s \\ 0 & \text{otherwise} \end{cases}$$

Expand the Summation

$$\sum_{n=-\infty}^{\infty} y[n]p(t-nT_s) =$$

...+
$$y[0]p(t) + y[1]p(t - T_s) + y[2]p(t - 2T_s) + ...$$

- SUM of SHIFTED PULSES p(t-nT_s)
 - "WEIGHTED" by y[n]
 - CENTERED at t=nT_s
 - SPACED by T_s
 - RESTORES "REAL TIME"

Pulse Shapes

Figure 4.17 Four different pulses for D-to-C conversion. The sampling period is $T_s = 0.005$, i.e., $f_s = 200$ Hz. Note that the duration of each pulse is approximately one or two times T_s .

Optimal Pulse

CALLED
"BANDLIMITED
INTERPOLATION"

$$p(t) = \frac{\sin \frac{\pi t}{T_s}}{\frac{\pi t}{T_s}} \quad \text{for } -\infty < t < \infty$$

$$p(t) = 0 \quad \text{for } t = \pm T_s, \pm 2T_s, \dots$$